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a b s t r a c t

We establish a modification of the one-dimensional two-phase Stefan problem which is promising for the
investigation of ultrafast processes in solids lasting less than the time of electron–phonon relaxation.
Under such conditions the heat equations should be solved separately for ions and electrons at constant
volume. We discuss the system of equations and boundary conditions for this special case and derive the
computational scheme for the numerical solution. To demonstrate our new approach we calculate the
electronic and ionic temperatures in an aluminum target subjected to a femtosecond laser pulse.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A classical Stefan problem naturally appears in slow processes
with phase transitions [1]. Indeed, Stefan himself considered the
problem of ice formation in the polar seas; he found an approxi-
mate solution of the heat conductivity equation with constant
coefficients: the thickness of ice layer was proportional to the
square root of time passed. Further improvement of the model
resulted in the so-called one-phase Stefan problem: the heat con-
ductivity equation is solved only in one domain, the left boundary
is at given temperature function, the domain and its right bound-
ary is at phase transition temperature. A special Stefan condition
is set at the right boundary: the heat flux through this boundary
causes the growth of the new phase. The solution of the one-phase
Stefan problem was found by Stefan at constant temperature at the
left boundary. Again, the thickness of the new phase was propor-
tional to the square root of the time passed; the temperature dis-
tribution was given by the error function [2].

Analytical solutions for the Neumann condition at the left
boundary are found only for some special cases, for example, for
the exponentially decaying with time [3,5] or power function of
time [6] boundary heat flux. Consideration of the heat propagation
in two phases separated by the moving boundary with the Stefan
condition defined on it identifies the two-phase Stefan problem.

The one- and two-phase Stefan problems are examples of the
so-called moving boundary problems (MBP): the boundary
condition is set at the surface which position is defined by the

solution of the problem. MBPs occurs in many areas of practical
interest from material science to geophysics and plasma physics
[7]. In particular, the melting and ablation processes under the
laser heating can be considered as MBPs [8–10].

The non-linear Stefan problem (for example, if heat capacity or
heat conductivity coefficients are temperature-dependent) can be
treated analytically in some special cases [11,12], but is usually
solved numerically; the overview of different approaches can be
found in the book [4].

In some cases it is of importance to take into account the finite
speed of heat propagation in matter, for example, in dielectric sol-
ids or other media with low value of the so-called second sound
[13]. This leads to the introduction of the hyperbolic term into
the heat equation and modification of the Fourier law; the corre-
sponding statements of the Stefan problem have been considered
in [14,15]. It is worth noting, however, that the hyperbolic heat
equation is not compatible with the second law of thermodynam-
ics because of the introduction of a new term into the definition of
the heat flux [16].

The Stefan condition is simply a particular case of energy con-
servation [17]; both phases are incompressible and non-moving.
However, in slow processes at constant pressure there can be a
considerable density change in a phase transition; this effect was
taken into account by some investigators [4]. On the other hand,
the appearance of ultrafast femtosecond lasers made it possible
to study very fast processes in which the change of density is neg-
ligible because the average displacement of atoms is insignificant
during the time of experiment [18–22]. So it is of interest to con-
sider the case of ultrafast isochoric heating with a phase transition
(melting) and establish the corresponding Stefan problem. The
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main idea of this paper is to formulate the modified two-phase Ste-
fan problem and to study the peculiarities of a numerical solution
to this problem by example of aluminum with a realistic equation
of state. In particular, we consider the distribution of electron and
ion temperatures as well as the time dependence of the position of
the phase boundary between the liquid and solid phases.

2. Model

The classical 1D two-phase Stefan problem [4] considers the
heat propagation in the domain 0 6 x 6 H in which the phase tran-
sition of the first order takes place and the boundary between two
phases propagates from x ¼ 0 to H (Fig. 1). The defining equation
system for the 1D case includes thermal conductivity equations
for two phases: liquid (with label l) and solid (with label s):
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and initial conditions:

xmð0Þ ¼ 0; ð7Þ

Tðx;0Þ ¼ xðxÞ: ð8Þ

Here Tðx; tÞ is the function of the one-dimensional temperature
distribution; q—the density, jl; cl and js; cs are the thermal con-
ductivity and specific heat capacity coefficients for the liquid and
solid phase, respectively. The function xm ¼ xmðtÞ indicates the
point dividing the solid and liquid parts of the domain; q0 and qH

are the heat fluxes at the boundaries; Tm—the melting tempera-
ture; a—the specific melting energy; xðxÞ—the initial temperature
distribution.

The evolution of a target heating by a femtosecond laser pulse
can be considered in the classical 1D two-temperature form when
the material motion is ignored [18]:
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Here Ee and Ei are the specific energies of electrons and ions,
respectively, je is the electron thermal conductivity, Te and Ti are
the temperatures of electrons and ions, respectively; Gei is the elec-
tron–phonon energy exchange coefficient. In this model the heat
conductivity of ions is neglected in comparison with the electronic
one; ions are heated by the energy exchange with electrons. This
leads to the delay between the electronic temperature gradient
which is created by the laser radiation absorption, and the ionic
heat flux, which is responsible for the heating of matter. The tem-
peratures of ions and electrons equalizes during the relaxation
time, so this lag tends to zero. This is to some extent similar to
the solution of the hyperbolic heat equation in which there is
always the delay between the heat flux and the temperature gradi-
ent [13]. However, the description of heat propagation in ions by a
hyperbolic heat equation is physically incomplete as the heat in
metals is conducted by electrons. Therefore the velocity of speed
distribution in the target is very high and this process for electrons
is adequately described by the parabolic heat equation. The laser
radiation is absorbed by electrons, so the heat flux at x ¼ 0 is
introduced for electrons as a boundary condition (see Fig. 1); for
ions the heat flux at the domain boundaries is 0. This approach is
valid for low and moderate ultrashort laser intensities
IL K 1013 W/cm2.

Combining the Stefan problem (1)–(8) and the two-tempera-
ture model (9), (10) we have to write out the thermal conductivity
equations for the electronic and ionic subsystems regarding the
discontinuity of the parameters at xm:
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The thermal conductivity equation and the boundary conditions
for the ions will be stated similar to the Stefan problem (1)–(8)
because the melting process is governed by the behavior of the
ionic subsystem. Electron (ion) thermal capacities of solid ces (cis)
and liquid cel (cil) states are known from an equation of state. As
a result of these assumptions we obtain the following set of
equations:
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with boundary conditions:Fig. 1. Distribution of temperature in a target subjected to heating.
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