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a b s t r a c t

Based on two local Gauss integrations and the projection-based stabilized finite element method, a local
projection-based stabilized finite element method for natural convection problem is proposed. The Oseen
iteration and decoupling technique are applied to improve stability and save computational time. Com-
pared with the common projection-based stabilized finite element method, the new method does not
need to introduce any extra degree of freedom. Thus, it can save a large amount of CPU-time to get
the same precision. Numerical results on the known analytical solutions, the driven cavity flow and
the partitioned square enclosure problem are given to verify the theoretical predictions and demonstrate
its high efficiency.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The natural convection problem constitutes an important sys-
tem of equations in atmospheric dynamics atmospheric fronts, kat-
abatic winds, natural ventilation, solar collectors, dense gas
dispersion, cooling of electronic equipments and nuclear reactors,
and insulation with double pane window. This system does not
only incorporate the velocity vector field as well as the pressure
field but also contains the temperature field. Thus, development
of an efficient and effective computational method for investigat-
ing this problem has practical significance, and has drawn the
attention of many researchers.

At the time of writing, there are numerous works devoted to the
development of efficient methods for the natural convection prob-
lem ([1–11] and the references therein). In the meantime, some
numerical analysis and numerical results for the natural convec-
tion equations can be found in literature [1,2] by Boland and Lay-
ton. An explicit finite element algorithm for convection heat
transfer problems has been presented by Manzari [12]. He has used
a standard Galerkin finite element method for spatial discretiza-

tion and an explicit multistage Runge–Kutta scheme to march in
the time domain. In addition, Çıbık and Kaya [3] have formulated
a projection-based stabilization finite element technique for solv-
ing the steady-state natural convection problems. The global stabi-
lizations are added for both velocity and temperature variables and
these effects are subtracted from the large scales.

This projection-based stabilization method, used projections
into appropriate function spaces in order to decompose solution
scales, can be considered as a subgrid stabilization method. The
subgrid stabilization methods are generally based on the notion
of scale separation which assumes that there exist large scales
and small scales of the flow. The key ideas of the subgrid stabiliza-
tion methods are to first split the approximation space into
resolved scales and subgrid scales, and then slightly modify the
Galerkin approximation by adding an asymptotically consistent
artificial diffusion term on the subgrid scales [13,14,16–19]. The
variational multiscale methods are also based on the decomposi-
tion of the flow scales and define the large scales by projection into
appropriate subspaces; see Hughes et al. [20], John et al. [21], Kaya
and Rivière [22], and Zheng et al. [23–25]. It is noted that due to
the same underlying concept, many subgrid stabilization methods
can be regarded as variational multiscale methods.

Standard Galerkin finite element method for natural convection
problem usually yields inaccurate approximate solutions and may
exhibit global spurious oscillations [3]. Hence, Çıbık and Kaya [3]
have constructed the efficient projection-based stabilized finite
element method for the natural convection problem to avoid some
drawbacks of the classical methods. However, this method needs
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to add extra storage compared with standard Galerkin finite ele-
ment method which introduces additional dependent variables.
Thus, this paper aims to propose a local projection-based stabiliza-
tion method for the natural convection equations without adding
any degree of freedom. This novel method focuses on the projec-
tion-based stabilized finite element method based on two local
Gauss integrations. The local Gauss integrations technique
[26,27] was used as a stabilizing term for the Stokes and Navier–
Stokes problems, where the authors applied them to offset the dis-
crete pressure space by the residual of the simple and symmetry
term at element level in order to circumvent the inf-sup condition.
Furthermore, in [23,28], this technique was used to solve the
incompressible flows problem at high Reynolds numbers and the
viscoelastic flows.

The focus of this paper is to apply a decoupling technique to the
natural convection problem. First, we propose a local projection-
based stabilization method by replacing the auxiliary terms with
two local Gauss integrations of the velocity and temperature in
the classical projection-based stabilization formulations, and show
that these two methods are equivalent in mathematics. However,
the proposed algorithm does not need to introduce any extra
degree of freedom, and can save a large amount of computational
time. Further, to save much more CPU-time, a decoupling tech-
nique is used based on the local projection-based stabilization
method.

This work can be cast in the framework of Zheng et al. [23] and
Wang [28]. However, it is different from them because of the dif-
ferent and more complicated equations and the two local Gauss
integrations technique for two variables (the velocity and temper-
ature), not one variable (the velocity). In fact, this paper can be
considered as a sequel and a complement of the work in [23,28].
The article is organized as follows. In next section, we introduce
considered equations, notations and some well-known results used
throughout this paper. Subsequently, a local projection-based sta-
bilized finite element method based on two local Gauss integra-
tions is introduced in Section 3. Moreover, numerical examples
are shown to verify the good properties of our method in Section
4. Finally, we end with a short conclusion.

2. Preliminaries

Let X be a bounded open domain in R2 with disjoint domains Xs

and Xf , assumed to have a Lipschitz continuous boundary @X. Sup-
pose CT ¼ @X n CB, where CB is a regular open subset of @X. Con-
sider the following stationary natural convection equations
including solid media in dimensionless form [1–3]

� PrDuþ ðu � rÞuþrp ¼ Pr RajT in Xf ;

div u ¼ 0 in Xf ;

�r � ðjrTÞ þ ðu � rÞT ¼ c in X;

u ¼ 0 on @Xf ; u � 0 in X�Xf ¼ Xs;

T ¼ 0 on CT ;
@T
@n
¼ 0 on CB;

ð1Þ

where u ¼ ðu1ðxÞ;u2ðxÞÞ represents the velocity vector, p ¼ pðxÞ the
pressure, TðxÞ the temperature, c the forcing function, Pr;Ra > 0 the
Prandtl and Rayleigh numbers, j > 0 the thermal conductivity
parameter, j ¼ ð0;1Þ the two-dimensional vector, and n the outward
unit normal to the CB. Besides, the symbols D;r and div denote the
Laplacian, gradient and divergence operators, respectively. More-
over, take the case j � jf in Xf and j � js in Xs, where jf and js

are positive constants denoted the thermal conductivity for the dif-
ferent media.

For the mathematical setting of problem (1), we introduce the
following Hilbert spaces:

X ¼ H1
0ðXf Þ2; W ¼ fs 2 H1ðXÞ : s ¼ 0 on CBg;

M ¼ L2
0ðXÞ ¼ q 2 L2ðXÞ :

Z
X

q dx ¼ 0
� �

:

The space L2ðXÞ is equipped with the L2-scalar product ð�; �Þ and
L2-norm k � k0. The space X is endowed with the usual scalar product
ðru;rvÞ and the norm kruk0. Standard definitions are used for the
Sobolev spaces Wm;pðXÞ, with the norm k � km;p;m;p P 0. We will

write HmðXÞ for Wm;2ðXÞ and k � km for k � km;2.
We define two continuous bilinear forms að�; �Þ and dð�; �Þ on

X � X and X �M, respectively, by

aðu;vÞ ¼ ðru;rvÞ; 8u;v 2 X; dðv ; qÞ ¼ ðq;divvÞ;
8v 2 X; 8q 2 M;

and a trilinear form on X � X � X by

bðu; v ;wÞ ¼ ððu � rÞv ;wÞ þ 1
2
ððdivuÞv ;wÞ

¼ 1
2

b1ðu; v;wÞ � 1
2

b1ðu; w; vÞ; 8u;v ;w 2 X;

where b1ðu; v ;wÞ ¼ ððu � rÞv ;wÞ. For fixed u, note that bðu; v;wÞ is
the skew-symmetric part of b1ðu; v ;wÞ.

We also define a continuous bilinear form �að�; �Þ and a trilinear
form �bð�; �; �Þ on W �W and X �W �W , respectively, by

�aðT; sÞ ¼ ðrT;rsÞ; 8T; s 2W;

and

�bðu; T; sÞ ¼ ððu � rÞT; sÞ þ 1
2
ððdivuÞT; sÞ

¼ 1
2

�b1ðu; T; sÞ � 1
2

�b1ðu; s; TÞ; 8u 2 X; 8T; s 2W;

where �b1ðu; T; sÞ ¼ ððu � rÞT; sÞ.
With the above notations, the variational formulation of prob-

lem (1) reads as follows: Find ðu; p; TÞ 2 X �M �W such that for
all ðv ; q; sÞ 2 X �M �W ,

Pr aðu; vÞ � dðv; pÞ þ dðu; qÞ þ bðu; u; vÞ ¼ Pr Ra ðjT; vÞ;

j�aðT; sÞ þ �bðu; T; sÞ ¼ ðc; sÞ:

(
ð2Þ

3. A local projection-based stabilized finite element method

Let T h ¼ fKg be a regular triangulation of X, indexed by a
parameter h ¼max

K2T h

fdiamðKÞg. We consider the finite element
spaces

Xh ¼ vh 2 X \ C0ð�XÞ2 : vhjK 2 P2ðKÞ2; 8K 2 T h

n o
;

Mh ¼ qh 2 M \ C0ð�XÞ : qhjK 2 P1ðKÞ; 8K 2 T h

n o
;

Wh ¼ sh 2W \ C0ð�XÞ : shjK 2 P2ðKÞ; 8K 2 T h

n o
;

Yh ¼ rh 2 L2ðXÞ : rhjK 2 P0ðKÞ; 8K 2 T h

n o
;

where PiðKÞ represents the space of ith order polynomial on the
set T h; i ¼ 0;1;2. Set Lh ¼ YhðXÞ2�2, and Rh ¼ YhðXÞ1�2. Note that
Xh �Mh satisfies the following discrete inf-sup condition

sup
v2Xh

dðv ; qÞ
krvk0

P bkqk0; 8q 2 Mh;

where the constant b > 0 is independent of h.
We firstly consider a common version of projection-based

stabilized finite element method which was proposed in [3] as
follows:
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