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a b s t r a c t

A Simplex Bare-bones Particle Swarm Optimization (KSM-BBPSO) algorithm based on the K-means
clustering was introduced, and on this basis, an improved hybrid Simplex-Particle Swarm Optimization
algorithm based on K-means clustering (KSM-PSO) was developed to retrieve the multi-parameters of
the semi-transparent media simultaneously in a transient conduction–radiation problem. The conduc-
tion–radiation parameter, scattering albedo, and boundary emissivity in a one-dimensional (1-D)
homogenous semitransparent slab were estimated simultaneously to illustrate the performances of the
KSM-BBPSO and KSM-PSO algorithms. The transient temperature responses on both sides of the medium
boundaries exposed to the pulse laser irradiation, which was simulated directly by Finite Volume Method
(FVM), were served as input for the inverse analysis. By the KSM-BBPSO algorithm introduced and
KSM-PSO algorithm developed, all the thermophysical parameters could be estimated with reasonable
accuracy, even with noisy temperature measurements. The KSM-PSO algorithm was proved to be fast,
accurate, and robust, while the KSM-BBPSO algorithm has better versatility.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the inverse heat transfer problems in semitransparent
media have been studied extensively for their widely practical
applications in various research fields such as atmosphere science,
aerospace engineering, medical imaging, remote sensing, and other
engineering areas [1–12]. Theoretically speaking, these inverse
problems involve retrieving the boundary conditions, the initial
conditions, geometry, the heat source, or the material themophysi-
cal properties, etc. Among these problems, the inverse problem of
coupled conduction–radiation to determine the material themo-
physical parameters and/or optical properties has received consid-
erable attention in the last two decades [5–9]. Most of these
researches were targeted for establishing the corresponding objec-
tive function, which is expressed by the sum of square residuals
between the calculated and observed temperature distribution in
space or time domain. Consequently, the media’s thermophysical
parameters and/or optical properties, including the thermal
conductivity, absorption coefficient, scattering coefficient,

conduction–radiation parameter, and medium’s boundary emissiv-
ity etc., were estimated by minimizing the objective function using
the inverse optimization methods.

To date, the widely used conventional inverse methods are gra-
dient-based methods, including the Conjugate Gradient (CG)
method, Gauss–Newton method (G–N) and Levenberg–Marquardt
(L–M) method, etc. For instance, Sarvari et al. [9] adopted the CG
method to retrieve the boundary conditions of the coupled conduc-
tion–radiation heat transfer problem. Daouas et al. [10] retrieved
some thermophysical parameters during transient coupled con-
duction–radiation procedure using the L–M method combined
with experimental measurements. Cheng et al. [11] developed a
revised Tikhonov regularization method to reconstruct three-
dimensional temperature distributions of a gas-fired pilot tubular
furnace from the green monochromatic radiative intensity which
can be calculated by the DRESOR method based on the radiation
image processing technology. However, all these gradient-based
algorithms need to solve the first or second derivative of the objec-
tive function with respect to the inversion parameters, which
maybe computationally expensive in terms of both memory
requirements and CPU time. Meanwhile, the retrieval result is
highly affected by the initial value. Without correlative experience,
it may be difficult to have a reasonable result unless a proper initial
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guess value is available. In a word, these methods are unable to
robustly provide solutions close to the global optimal domain [12].

To circumvent this issue, the intelligent optimization
algorithms based on the population exhaustive search has been
proposed to solve the ill-posed inverse heat transfer problems in
recent years, such as the Genetic Algorithm (GA), the Particle
Swarm Optimization (PSO), the Ant Colony Optimization (ACO),
and the Neural Network Algorithm (NNA) [12–19]. A characteristic
feature of these evolutionary search optimization methods is that
they can solve the global optimal problem reliably and obtain high
quality global solutions with enough computational time. Many
literatures for solving inverse conduction–radiation problems have
addressed these intelligent evolutionary searching methods.
Chopade et al. [12] used the boundary temperatures obtained by
solving the forward problem of the coupled conduction–radiation
heat transfer in one-dimensional (1-D) participating media to esti-
mate the media’s extinction coefficient and scattering albedo using
PSO algorithm. The author found that the retrieval results of PSO
algorithm were more accurate than those of GA. Verma et al.
[13] retrieved conduction–radiation parameter, optical thickness,
and the boundary emissivity during the transient coupled conduc-
tion and radiation heat transfer in 1-D slab medium using GA.

Furthermore, Das et al. [14,15] used the GA for inverse analysis
of transient coupled conduction–radiation heat transfer in two-
dimensional (2-D) medium to estimate the conduction–radiation
parameter, scattering albedo, and boundary emissivity. Recently,
they adopted the Lattice Boltzmann method (LBM) and the Finite
Volume Method (FVM) to retrieve the extinction coefficient and
conduction–radiation parameter of non-Fourier coupled conduc-
tion–radiation heat transfer combining with GA [15]. Our research
group has demonstrated the use of several PSO-based algorithms
to determine the radiative properties, particle size distributions
and geometry conditions in various inverse radiation problems
[18–21]. More recently, some new intelligent optimization
techniques have been proposed to solve the coupled conduction–
radiation problems to look for improvements besides GA and
PSO. Chopade et al. [22] investigated the transient inverse problem
of coupled conduction–radiation heat transfer using Differential
Evolution algorithm. A new Homogenous Continuous ACO algo-
rithm was developed by our group to retrieve the thermophysical
parameters of participating medium in the problem of coupled
conduction–radiation [23].

However, to the best of author’s knowledge, the intelligent
optimization methods are mostly limited to retrieve the single or

Nomenclature

bdlow (j) the search lower limit of the jth coordinate’s corre-
sponding parameter

bdup (j) the search upper limit of the jth coordinate’s corre-
sponding parameter

C1, C2 the two positive acceleration coefficients of PSO-based
algorithm

cp specific heat capacity, J/(kg K)
F the objective function of minimization
h1, h2 the convective heat transfer coefficient, W/(m2 K)
I the radiative intensity, W/(m2 sr)
Iw1, Iw2 the intensity on the left and right boundary,

W/(m2 sr)
K the simplex method interval generation
L length of the media, m
M the number of particles in each swarm
mod the modulus operator
N the maximum number of generation
n the dimension of the problem
n1 the refractive index of the media
Pði; jÞ the value of the jth coordinate of the ith vertex in the

simplex method
PgðtÞ the global best position discovered by all particles at

generation t
PiðtÞ the local best position of particle discovered at genera-

tion t or earlier
qr the radiation heat flux term, W/m2

qlaser the laser power density, W/m2

q0laser the dimensionless laser power density
qr

w1, qr
w2 the radiation heat flux on the left and right boundary,

W/m2

R1, R2 the uniformly distributed random number in [0,1]
T temperature, K
Ts the ambient temperature, K
Tw1, Tw2 the temperature on the left and right boundary, K
t the iteration in PSO-based algorithm or time, s
tlaser the duration of laser action
t0laser the dimensionless time of laser action
ViðtÞ the velocity array of the ith particle at generation t
v ijðtÞ the velocity of the ith particle with the jth dimension at

generation t (i = 1, . . .,M; j = 1, . . .,n)

XiðtÞ the position vector of the ith particle at generation t
x the x-axis coordinate
xijðtÞ the position of the ith particle with jth dimension at

generation t (i = 1, . . .,M; j = 1, . . .,n)

Greeks symbols
a reflection factor
b the compression factor or extinction coefficient, m�1

v sensitivity coefficient
D the percentage of small change of the inversion param-

eter
d contraction factor
e boundary emissivity
erel the measured error of the inversion parameter
U scattering phase function
c the extension factor or measurement errors, %
gt the ratio of computational time to the laser action time
ja absorption coefficient, m�1

k conductivity, W/(m K)
li;j the mean of Gaussian distribution
Hw the dimensionless boundary temperature
h temperature excess
q the reflectivity or the mass density, kg/m3

r the standard deviation or the Stefan–Boltzmann con-
stant (5.6703 � 10�8 W m�2 K�4)

rs scattering coefficient, m�1

X solid angle, sr
x scattering albedo or the inertia weight factor
1 random variable

Subscripts
b blackbody
est estimated value
exact exact value
mea measured value
w1, w2 the left and right boundary

Superscript
m the scattering direction or outgoing direction
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