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a b s t r a c t

A novel equation of heat conduction is derived with the help of a generalized entropy current and internal
variables. The obtained system of constitutive relations is compatible with the momentum series expan-
sion of the kinetic theory. The well known Fourier, Maxwell–Cattaneo–Vernotte, Guyer–Krumhansl,
Jeffreys-type, and Cahn–Hilliard type equations are derived as special cases.

Some remarkable properties of solutions of the general equation are demonstrated with heat pulse
initial and boundary conditions. A simple numerical method is developed and its stability is proved.
Apparent faster than Fourier pulse propagation is calculated in the over-diffusion regime.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently a common generalization of the Fourier, Maxwell–Cat-
taneo–Vernotte, Guyer–Krumhansl, Jeffreys-type and Green–Nag-
hdi heat conduction equations was derived in the framework of
non-equilibrium thermodynamics [1]. Then experimental and the-
oretical studies were performed in order to understand the role of
different terms and also the possibility of detecting non-Fourier
effects [2–4]. According to the basic hypothesis of these investiga-
tions, material heterogneities are manifested in additional higher
order space and time derivatives in the material functions and
result in nonlocal and memory effects (see e.g. [5–7]). However,
these effects may be not apparent, the observed phenomena may
be Fourier like due to the universal dissipative nature of the addi-
tional terms. Therefore it is important to identify and analyze pos-
sible qualitative signatures for experimental observation.

The non-equilibrium thermodynamical theory of generalized
heat conduction of [1] is based on the assumption of a minimal
deviation from local equilibrium. The deviation is expressed in
terms of new fields and may appear both in the density and in
the current density of the entropy:

– In the entropy a quadratic expression of a vectorial internal var-
iable represents the deviation from local equilibrium in the con-
tinua [8,9]. This contribution results in memory effects.

– A generalization of the entropy current density, with the help of
current multipliers, represents the deviation of the currents
from their local equilibrium form [10–13]. This contribution
results in nonlocal effects.

The modifications are restricted only by the second law of ther-
modynamics, do not incorporate assumptions about the structure
of the continua, therefore in this sense the approach is universal
[14,15].

An important problematic point of the theory is, that the struc-
ture of the derived system of evolution equations seems to be
incompatible with the existing theories of Extended Thermody-
namics, that is with the hyperbolic system of the momentum series
expansion hierarchy of the kinetic theory [16]. In particular it does
not compatible with the ballistic phonons, a well explained non-
Fourier propagation mechanism in low temperature materials
[17,18].

In this paper we slightly modify and extend the approach of [1]
introducing the heat flux as a basic field, instead of the general vec-
torial internal variable of [1]. We also introduce an additional sec-
ond order tensorial internal variable and the corresponding
generalization of the entropy flux by current multipliers. This
way we reproduce the first two levels of the hierarchy of kinetic
theory in a generalized, phenomenological framework, without
any particular assumptions on the structure of the material (e.g.
a rarefied gas). We assume only a second law compatible deviation
from local equilibrium.

What we obtain is more general than the corresponding set of
equations of Extended Thermodynamics, that is the equations
obtained from or motivated by the hierarchy of moments in kinetic
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theory. Due to the phenomenological assumptions the whole
structure is flexible and we can derive several known generaliza-
tions of the Fourier equation in a uniform framework obtaining
information regarding their applicability and interrelations. In this
respect it is remarkable that Green–Naghdi equations [19–21] are
obtained as well as Cahn–Hilliard type heat conduction [22,23].
These heat conduction models were justified by rigorous mathe-
matical methods but not related to Extended Thermodynamics.

Another important property of our approach is that old para-
doxes and reservations regarding some forms of heat conduction
are shown in a new light. For example the well discussed paradox
of heat waves with negative values of temperature of the Maxwell–
Cattaneo–Vernotte and the Jeffreys-type equations (see e.g. in
[24,25]) seems to be removed simply because thermodynamics
requires the gradient of the reciprocal temperature instead of the
gradient of the temperature in the related terms of the equations.

This paper focuses on the problem of observability of non-
Fourier heat conduction from a theoretical point of view. Solving
generalized heat conduction models with heat pulse initial and
boundary conditions will demonstrate that Fourier type solutions
may appear unexpectedly and therefore in addition of wavelike
effects one may look for other observable benchmarks of heat
conduction beyond Fourier.

In the next section we introduce the theory and derive the heat
conduction equation up to the second current multiplier and show
some known particular cases. The third section describes the heat
pulse experiment, then we introduce a simple finite difference
numerical method to solve the set of equations. Finally, in the fifth
section, we show some demonstrative solutions of the equations
on the example of laser flash experiment in order to identify
possible non-Fourier effects.

2. Non-equilibrium thermodynamics of heat conduction

In this paper we restrict ourselves to rigid heat conductors,
therefore the time derivatives are partial and the density of the
material is constant. Our starting point is the balance of internal
energy:

@teþr � q ¼ 0: ð1Þ

Here e is the density of the internal energy, and q is the heat flux,
the current density of the internal energy. @t denotes the partial
time derivative and r with the central dot is the divergence,
r � q ¼ trðrqÞ.

The second law is given in the following form

@tsþr � J P 0: ð2Þ

Here s is the entropy density and J is the entropy current density
vector. For modeling phenomena beyond local equilibrium, we
introduce the heat flux q as basic field variable and also a second
order tensorial internal variable denoted by Q . The advantage of
using the heat flux as basic field quantity instead of a vectorial
internal variable of the treatment in [1] is the easier comparison
with Extended Thermodynamics. The deviation from local equilib-
rium will be characterized by two basic constitutive hypotheses:

– We assume a quadratic dependence of the entropy density on
the additional fields [8]:

sðe;q;Q Þ ¼ seqðeÞ �
m1

2
q � q�m2

2
Q : Q ; ð3Þ

where m1 and m2 are positive constant material coefficients. This
is not a complete isotropic representation, for the sake of sim-
plicity we have introduced a single material coefficient for the
second order tensor Q , too. The derivative of the local
equilibrium part of the entropy function seq by the internal

energy is the reciprocal temperature: dseq

de ¼ 1
T and

Q : Q ¼ trðQ � Q Þ. The quadratic form may be considered as a
first approximation in case of the heat flux and is due to the
Morse lemma for the internal variable [9]. The sign is deter-
mined requiring concave entropy function, that is, thermody-
namic stability [18,17].

– We assume that the entropy flux is zero if q ¼ 0 and Q ¼ 0.
Therefore it can be written in the following form:

J ¼ b � qþ B : Q : ð4Þ

Here b is a second order tensorial constitutive function and B is a
third order one. They are the current multipliers introduced by
Nyíri [11]. General aspects of this assumption were treated in
[12] and the special case of heat conduction was considered in
[1,6].

Now the basic fields are T;q and Q , the constitutive functions
are b and B. The entropy production is:

@tsþr� J¼�
1
T
r�q�m1q �@tq�m2Q : @tQ þb :rqþq � ðr �bÞ

þB..
.
rQ þQ : ðr �BÞ¼ b�1

T
I

� �
:rqþ r�b�m1@tqð Þ �q

þ r�B�m2@tQð Þ : Q þB..
.
rQ P 0: ð5Þ

Here I is the unit tensor and the triple dot denotes the full contrac-
tion of third order tensors. In the last two rows the first and the
third terms are products of second order tensors, the second term
is the product of vectors and the last term is of third order ones.
The time derivatives of the state variables q and Q represent their
evolution equations, here they are constitutive quantities. Therefore
one can identify four thermodynamic forces and currents in the
above expression and assume linear relationship between them in
order to obtain the solution of the entropy inequality.

The third and fourth force–current pairs are related to the ten-
sorial internal variable Q . In case of isotropic materials only the
second order tensors can show cross effects (extended thermal
and internal interactions), the vectorial (thermal) and third order
tensorial terms (extended internal) are independent (see Table 1).

In the following we will simplify the treatment and develop the
theory in one spatial direction. In the one dimensional representa-
tion of the tensors we remove the boldface letters, and the one
dimensional spatial derivative is denoted by @x.

In this case the entropy production can be rewritten as:

b� 1
T

� �
: @xqþ @xb�m1@tqð Þqþ @xB�m2@tQð ÞQ þ B@xQ P 0:

ð6Þ

The linear relations between the thermodynamic fluxes and forces
result in the following constitutive equations:

m1@tq� @xb ¼ �l1q; ð7Þ
m2@tQ � @xB ¼ �k1Q þ k12@xq; ð8Þ

b� 1
T
¼ �k21Q þ k2@xq; ð9Þ

B ¼ n@xQ : ð10Þ

The entropy inequality (6) requires the following inequalities

l1 P 0; k1 P 0; k2 P 0; n P 0; and K ¼ k1k2�k12k21 P 0: ð11Þ

The above set of constitutive Eqs. (7)–(10) together with the energy
balance (1) and the caloric equation of state TðeÞ give a solvable set
of equations, with suitable boundary and initial conditions. In case
of constant coefficients one can easily eliminate the current
multipliers by substituting them from Eqs. (9) and (10) into Eqs.
(7) and (8) and obtain:
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