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a b s t r a c t

The effective radiative conductivity of fibrous material is an important part of the evaluation of the ther-
mal performance of fibrous insulators. To better evaluate this material property, a three-dimensional
direct simulation model which calculates the effective radiative conductivity of fibrous material is
proposed. The simplified model assumes that the fibers are in a cylindrical shape and does not require
identically-sized fibers or a symmetric configuration. Using a geometry with properties resembling those
of a fibrous insulator, a numerical calculation of the geometric configuration factor is carried out. The
results show the dependency of thermal conductivity on temperature as well as the orientation of the
fibers. The calculated conductivity values are also used in the continuum heat equation, and the results
are compared to the ones obtained using the direct simulation approach, showing a good agreement.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fibrous materials, such as Phenolic Impregnated Carbon Ablator
(PICA) [1], are part of a new generation of light weight insulators
used on reentry vehicles for Thermal Protection Systems (TPS)
[2–7]. Heat transfer through fibrous materials has been investi-
gated in numerous studies [8–11], and new models have been
developed to estimate the TPS material response to high-enthalpy
environments [12–14]. In thermal response models, radiation and
conduction are two major processes that must be taken into
account. Both of these phenomenon require a detailed knowledge
of the micro-scale geometry of the material. For radiative transfer,
the upscaling task is complex, since the process depends on the
specific orientation of individual fibers and their view factors. Dif-
ferent models for radiation and combined radiation–conduction
energy transfer in an absorbing and scattering fibrous medium
have been previously developed [15–17]. However, these models
are limited to materials where the fibers have ordered geometrical
features and are oriented parallel to planar boundaries. Hence,
developing new models with the ability to calculate the material
thermal properties using real geometrical features of the fibers is
a significant improvement.

In order to investigate the anisotropic behavior of the fiber pre-
forms, a Direct Simulation (DS) for a two-dimensional fibrous med-
ium has been proposed by van Eekelen and Lachaud [18]. Based on
the hypothesis of Rosseland [19], they model the thermal radiation
process in a fiber preform medium made of randomly positioned
but parallel and identically-sized fibers. Although they show that
there is a temperature dependence of the radiative conductivity,
the connection to angular dependence was not taken into account.
However, it has been shown that light-weight fibrous insulator
such as PICA have a preferred orientation of the fibers and,
therefore, show anisotropic behavior [20–24].

In the present paper, a robust DS model that covers both the
angular and temperature dependency of the radiative conductivity
is proposed. The model is used to determine the values for the
effective radiative conductivity of an anisotropic fibrous material.
The conductivity values are then tested using the DS model
combined with an approximate thermal propagation method
and are compared to results obtained using a macro-scale
volume-averaged heat transfer continuum analysis.

2. Model and test-geometry

2.1. Fiducial volume simulation

While X-ray micro-tomography measurements of PICA [20]
show that the overall geometry of the actual fibers is not perfectly
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cylindrical, the high porosity of the material makes the cylindrical
geometry appropriate for validation studies. As illustrated sche-
matically in Fig. 1, the measurement volume, or fiducial volume,
used in the present analysis is assumed to be a cubic enclosure,
1:0 mm ðxÞ � 1:0 mm ðyÞ � 1:0 mm ðzÞ, which contains the arbi-
trarily sized, positioned, and oriented cylinders.

The cylindrical fibers are generated in two steps. First, a set of

arbitrary values for the radius and length, frkgM
k¼1 and fhkgM

k¼1, are
assigned to M cylinders. In Cartesian coordinates, if the cylinders
are generally oriented along the z-axis ð0;0;1Þ, then the centers
of the bottom and top cap of the kth fiber are p1;k ¼ ð0;0;�hk=2Þ
and p2;k ¼ ð0;0;þhk=2Þ, respectively. Secondly, the fibers within
the 3D geometry (fiducial volume) are rotated and translated using
a linear transformation mapping, TrðxÞ ¼ x0. Rotation and transla-
tion are accomplished by using a pair of operators, called the rota-
tion and translation operators. These operators are combined to
form the transform operator Tr. The transform operator modifies
the observation point x ¼ ðx; y; zÞ as follows:

x0 ¼ TrðxÞ ¼
x0
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where Rmn and ðx0; y0; z0Þ are rotation and translation matrix ele-
ments, respectively. The rotation operator R is an extrinsic rotation
defined as three matrix multiplications RcðzÞRbðyÞRaðxÞ, where a;b; c
are random Euler angles about the x-, y-, z-axes, respectively. A
transform operator is assigned for each cylinder. Therefore, the
main axis, top, and bottom cap of the kth cylinder are respectively
transformed to:

vk ¼ ðR13;R23;R33Þk;
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The geometrical properties of the fiber used in the model have a
radius of 10:0 6 r 6 20:0 lm and a length of 300:0 6 h 6 600:0 lm.
The non-overlapping fibers (verified using the separating axes
method [25]) with random sizes and orientations are positioned
irregularly within the fiducial volume until the desired fiber volume
fraction of ’0.2 is obtained. The fibers have an azimuthal direction
oriented between �15:0� < n < 15:0� with respect to the xy-plane.
This preferred orientation is expected to reduce the thermal conduc-
tivity in z-direction. The geometrical layout of the cylindrical fibers
used in the present analysis are presented in Fig. 2.

The boundary surfaces and the fibers are referenced using the
following set of integer as subscripts:

0;1;2;3;4;5;|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Internal boundary surfaces of the enclosure

6;7; . . . ;N � 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Surface of the fibers

; N ¼ 6þM:

Nomenclature

Symbols
A total surface area of a fiber [m2]
d distance between cylinders [m]
dA differential area [m2]
h length [m]
K geometric factor [m]
M number of cylindrical fibers
m mass [kg]
N number of surfaces within enclosure
q heat flux [W m�2]
R rotation matrix
r radius [m]
S distance between two differential elements [m]
T absolute temperature [K]
t time [s]
V total volume of a fiber [m3]
x; y; z space coordinates [m]
x0; y0; z0 translation matrix elements [m]
cp specific heat capacity [J kg�1 K�1]

Greek symbols
a; b; c Euler angles
d Kronecker delta
� emissivity
j radiative conductivity [W m�1 K�1]

Tr transform operator
/ porosity
q effective density [kg m�3]
qc carbon fiber density [kg m�3]
r Stefan–Boltzmann constant [W m�2 K�4]
s iteration counters
n maximum bias angle
f small error due to grid resolution

Subscripts
j; k indices denoting individual fibers and enclosure internal

boundary surfaces
m;n indices denoting matrix elements
inc incoming
out outgoing

Vectors
p0, p00 surface element position of source and target [m]
p1, p2 bottom and top cap center position [m]
u coordinates on the cylinder
u0 line equation
v, v0 direction vectors
x, x0 space coordinates vector [m]

Fig. 1. Schematic figure of the specific experimental geometry employed in the
model. The fiducial volume consists of a cubic enclosure whose boundary walls are
composed of the same material as the inside fibers. The integers are used to identify
the boundary surfaces.
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