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a b s t r a c t

This paper presents a solution for the inverse heat conduction problem (IHCP) in a multi-layer medium
based on solutions from individual layers separately. The approach allows for inclusion of known contact
resistances between the layers. The temperature histories are assumed known at two points on the inner
layer and the heat transfer rate at the far end of the outer layer is the desired unknown parameter. A step-
by-step solution is proposed for solving this problem based on minimization of the sum-of-squared
errors between the computed and known temperature values and using Tikhonov regularization for sta-
bilizing the solution. A Tikhonov digital filter solution is developed which allows near real-time heat
transfer estimation in multi-layer application. The proposed method is tested via numerical experiments
using exact solutions and ANSYS to generate synthetic data.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse heat conduction problem (IHCP) is defined as the
problem of estimating unknown surface conditions (temperature
or heat flux) using internal temperature measurements. This prob-
lem arises in several industrial applications such as thermal man-
ufacturing processes. The IHCP is an ill-posed problem due to the
lack of continuous dependence of the solution on the data. In other
words, an error in input data will result in a significant output
error. Therefore, an appropriate regularization method needs to
be applied to convert the ill-posed problem to a nearby well-posed
problem which can be solved. Several techniques have been pro-
posed and applied for solving IHCPs which can be found in refer-
ences namely Beck [1], Alifanov [2], Ozisik and Orlande [3] and
Murio [4]. Some of these methods include the least-square method
with regularization, the sequential function specification, conju-
gate gradient method and numerical approaches [1].

Conduction through multi-layer mediums has been discussed in
several references. Ozisik [5] discussed conduction in one dimen-
sional composite media using different approaches including
orthogonal expansions, Green’s functions and Laplace transform.
The transient response of one-dimensional multilayered composite
conducting slabs to sudden variations of the temperature of the

surrounding fluid is studied by de Monte [6]. Lu et al. [7] developed
an analytical method for solving multi-layer heat conduction prob-
lems using Laplace transform and separation of variables. They show
that the result from their proposed closed form solution is in good
agreement with numerical techniques. Haji-Sheikh and Beck [8]
studied the temperature field in multi-dimensional, multi-layer
bodies for the boundary conditions of the first, second and third kind.
A solution for transient heat conduction through a one-dimensional
three-layer composite slab is presented by Sun and Wichman [9].

Unlike direct problems, the solution of IHCPs for a multi-layer
medium is only discussed in a few studies. Al Najem and Ozisik
[10] conducted an inverse heat conduction analysis for estimating
the surface condition in composite layers based on a splitting-up
procedure and nonlinear least-squares technique for the whole
time domain. Ruan et al. [11] calculated the unknown boundary
cooling condition and contact heat transfer coefficient for solidifi-
cation of alloys based on the least square method and using Beck’s
future time method and a regularization technique to stabilize the
solution. A study on the design of optimal transient heat conduc-
tion experiments on composite orthotropic materials is performed
by Taktak et al. [12]. They considered several geometries for both
1-D and 2-D cases. Al-Najem [13] developed a method of analysis
for determining surface conditions from the knowledge of the time
variations of the temperature at the insulated boundary. He used
two segmented polynomials in time for the unknown surface tem-
perature. An inverse solution is then developed over the whole
time domain using the splitting-up procedure.
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Recently several research works have been performed to inves-
tigate real-time or filter forms for processing temperature data to
solve IHCPs. A filter solution based on the idea of training neural
networks is studied by Kowsari et al. [14]. Ijaz et al. [15], used a
Kalman filter to solve a two-dimensional transient IHCP. Feng
et al. [16] used Laplace transforms to relate the measured condi-
tions at one end of a domain to the unknown conditions at the
remote surface. Woodbury and Beck [17] studied the structure of
the Tikhonov regularization problem and concluded that the
method can be interpreted as a sequential filter formulation for
continuous processing of data. They show that the computed heat
fluxes using the whole domain solution and the filter coefficient
solution are virtually the same for the constant-property solutions.

In most of the IHCP studies, the heating condition on the remote
boundary is assumed as an insulated surface or cooled with a
known heat transfer coefficient, e.g., [15,18,19]. However, in prac-
tice such ideal conditions are not easy to attain. Most recently
Woodbury et al. [20] developed a filter-based solution to incorpo-
rate the temperature measurement history from a second subsur-
face sensor as a remote boundary condition in an IHCP solution. An
example of such a problem in industry is the Directional Flame
Thermometer (DFT) which is an equilibrium heat flux sensor that
is used to estimate the heat flux using temperature measurements
[21].

In the present paper, a solution for the IHCP is proposed for a
two-layer medium when the temperature measurement history
is given in two interior locations of the inner layer. A step-by-step
solution is proposed for solving this problem based on the minimi-
zation of the sum of the squared errors between the computed and
known values and using Tikhonov regularization (TR) for stabiliz-
ing the solution. The resulting algorithm is written in filter form.
The filter form solution can be used for near real time heat flux
estimation. The proposed solution is then demonstrated through
several numerical experiments. The filter solution of the IHCP has

a number of advantages including simplicity, continuous operation
and application to moderate nonlinearity [22] which makes it an
appropriate approach for real time heat flux estimation in indus-
trial applications. It is noteworthy that when the material proper-
ties are temperature dependent, the problem is no longer linear.
For this type of problem, the filter coefficients for a range of tem-
peratures can be calculated and then, using linear interpolation,
the values of filter coefficients can be found for each time step
based on the current level of temperature.

2. Problem definition

It should be noted that the method presented in this paper can
be applied on a medium with more than two layers as long as there
are two temperature measurements available on the inner layer.
However, a two layer medium is considered to demonstrate the
application of the proposed approach. Basically, an IHCP is solved
for each layer, starting from the one with known temperature mea-
surements, and the heat flux is estimated at the interface with the
next layer. A schematic of a two-layer slab is shown in Fig. 1. As
seen, in Fig. 1, the temperature measurement histories are avail-
able in the innermost layer (layer 2) for x = x1 and x = x2 while no
specific temperature/heat flux measurement is available on the
other layer(s) (here, layer 1). The desired unknown parameter is
the heat flux at the remote surface of the outer layer (layer 1, x = 0).

3. Solution strategy for the multi-layer IHCP

Two IHCPs are solved separately for heat flux estimation at x = 0
and eventually a coupled solution is derived for the two-layer
problem. A schematic of the system is given in Fig. 1. The solution
is started in the inner layer, where two temperature measurements
are available at x1 and x2 = L1 + L2 and q1 is the unknown heat flux

Nomenclature

f filter coefficients (coupled solution)
F1 filter matrix (X22 case, layer 1)
F2 filter matrix (X21 case, layer 2)
g filter coefficients (coupled solution)
G Green’s function
G filter matrix (X12 case)
k thermal conductivity, W/m-K
L thickness of the layer, m
mf number of future time steps
mp number of past time steps
n number of time steps (Eq. (37))
q heat flux, W/m2

S sum of squares of the temperature error, K2

t time, s
td dimensionless time step
T temperature, K
x spatial coordinate, m
x0 dummy integration variable, Eqs. (1) and (13)
X sensitivity matrix for unknown surface heat flux
y measured temperature at boundary x = L
Y measured temperature at location x = x1

Z sensitivity matrix for measured temperature boundary
condition at x = L2

Greek/roman
a thermal diffusivity (k/C), m2/s

aT Tikhonov regularization parameter
b eigenvalue
/ step response function for unit heat flux at x = 0
g step response function for unit temperature at x = L
s integration variable, Eqs. (1) and (13)

Subscripts
0 surface location or reference value
c reference value for non-dimensionalization
i time index
M current time step
m eigenvalue index
ref suitable reference value (arbitrary)
ss steady state
imax last time index
X12 Cartesian heat conduction problem with type 1 and type

2 boundary conditions
X21 Cartesian heat conduction problem with type 2 and type

1 boundary conditions
X22 Cartesian heat conduction problem with type 2 and type

2 boundary conditions

Superscript
~ dimensionless parameter
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