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Space agencies worldwide are actively exploring the implementation of two-phase thermal management
systems to support astronaut life onboard future space vehicles and planetary bases. Key motivations for
these efforts are to increase the efficiency of power utilization and reduce overall weight and volume.
These advantages are realized by orders of magnitude enhancement in heat transfer coefficient achieved
with flow boiling and condensation compared to single-phase systems. This study will review published
literature concerning two-phase flow and heat transfer in reduced gravity. Discussed are the different
methods and platforms dedicated to exploring the influence of reduced gravity, including ground flow
boiling experiments performed at different orientations relative to Earth gravity, as well as reduced grav-
ity adiabatic two-phase flow, pool boiling, flow boiling and CHF experiments. Despite the extensive data
and flow visualization results available in the literature, it is shown that there is a severe shortage of use-

Microgravity

ful correlations, mechanistic models and computational models, which compromises readiness to adopt
flow boiling in future space systems. Key recommendations are provided concerning platform, heater
design, and operating conditions for future studies to expedite the deployment of two-phase thermal

management in future space missions.
© 2014 Elsevier Ltd. All rights reserved.
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Nomenclature
A cross-sectional area of flow channel Uy bubble rise velocity
b ratio of wetting front length to wavelength w heated width of channel’s cross-section
Bo Bond number We Weber number
Cri interfacial friction coefficient Xe thermodynamic equilibrium quality
C, distribution parameter in Drift Flux model z stream-wise coordinate
Cp specific heat at constant pressure Zo distance from leading edge of heated wall to location
D diameter where vapor velocity surpasses liquid velocity
Dy hydraulic diameter, 4A/P
f friction factor Greek symbols
Fr Froude number o vapor void fraction
G mass velocity é mean thickness of vapor layer
g gravity On heated wall thickness
& Earth gravity n interfacial perturbation
&n component of gravity normal to heated wall Ho amplitude of interfacial perturbation
g component of gravity opposite to direction of fluid flow 2 wavelength
H height of channel’s cross-section e critical wavelength
h heat transfer coefficient U dynamic viscosity
Hy mean thickness of liquid layer M kinematic viscosity
hgg latent heat of vaporization I dimensionless group
Hg mean thickness of vapor layer ) density
j superficial velocity 0" modified density
k thermal conductivity; wave number (27/1) o surface tension
L heated length T shear stress
m mass flow rate 0 flow orientation angle
Nu Nusselt number
P perimeter Subscripts
p pressure :
Pr Prandtl number gsymp ﬁ?{lﬁn E;?Jtllg
Q volumetric flow rate f saturated liquid
q" wall heat flux
Y <. g saturated vapor
qn critical heat flux (CHF) h heated wall
q, wetting front lift-off heat flux i interface
Re Reynolds number in inlet to heated wall
T temperature . m critical heat flux
ATpo  outlet subcooling, Tegro — Tp o min minimum
u mean liquid inlet velocity max maximum
Ur mean veloc@ty of liquid layer 0 outlet from heated wall
Ug mean velocity of vapor layerh sat saturation
Ugn mean vapor velocity in wetting front normal to heated sub subcooling
wall w wetting front; heated wall

1. Introduction

1.1. Importance of two-phase thermal management to future space
missions

Many modern applications requiring the dissipation of large
concentrated heat loads rely on two-phase thermal management
systems that employ both flow boiling and condensation. Unlike
single-phase systems, which rely entirely on sensible heat rise of
the working fluid to remove the heat, two-phase systems capitalize
upon latent heat in addition to the sensible heat, which allows
them to achieve orders of magnitude enhancement in heat transfer

coefficient and much lower temperatures of the heat dissipating
device compared to single-phase counterparts [1]. Associated with
heat-flux controlled flow boiling, critical heat flux (CHF) is argu-
ably the most important design parameter for two-phase thermal
management systems. Since exceeding this limit can lead to
catastrophic failure, a key goal in designing a two-phase thermal
management system is to increase CHF in order to broaden the
useful nucleate boiling heat flux range. This important goal has
spurred many recent research efforts to both increase and predict
CHF using a variety of boiling configurations, including pool [2,3],
channel flow [4,5], mini/micro-channel [6], spray [7,8], and jet
[9-11], as well as hybrid cooling configurations [12,13].
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