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c School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA

a r t i c l e i n f o

Article history:
Received 28 March 2014
Received in revised form 24 August 2014
Accepted 25 August 2014
Available online 27 September 2014

Keywords:
Buoyancy-thermocapillary convection
Buoyancy–Marangoni convection
Free surface flow
Noncondensable gas
Thermocapillarity
Phase change model
Kinetic Theory of Gases
Statistical Rate Theory
Nonequilibrium Thermodynamics
Accommodation coefficient

a b s t r a c t

Convection in a layer of fluid with a free surface due to a combination of thermocapillary stresses and
buoyancy has been studied extensively under atmospheric conditions. However, recent experimental
results have shown that removing most of the air from a sealed cavity significantly alters the flow struc-
ture and, in particular, suppresses transitions between different convection patterns found at atmo-
spheric conditions. On the other hand, removing air has a very small effect on the flow speed, while a
simple analytical estimate predicts that complete removal of noncondensable gases such as air should
reduce the flow speed by an order of magnitude. To understand these unexpected results, we have for-
mulated and numerically implemented a detailed transport model that takes into account mass and heat
transport in both phases in the absence of noncondensables. The model was used to investigate how the
flow is affected by the magnitude of the (poorly defined) accommodation coefficient and by the temper-
ature jump across the liquid–vapor interface predicted by some phase change models. Our results elim-
inate both effects as possible explanations for the unexpected experimental observations, suggesting that
the small amount of air left in the cavity in the experiments is the most likely, albeit somewhat unex-
pected, explanation for the observations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Convection in liquid films driven by horizontal temperature
gradients has attracted attention in the past due to applications
to crystal growth in microgravity environments, where evapora-
tion is negligible, buoyancy plays no role, and the flow is driven
by thermocapillarity. More recently, the focus shifted to flows dri-
ven by a combined action of capillary pressure, thermocapillary
forces, and buoyancy with phase change playing an increasingly
important role due to applications in thermal management in ter-
restrial environments. In particular, devices such as heat pipes and
heat spreaders, which use phase change to enhance thermal trans-
port, are typically sealed, with noncondensables (such as air),
which can impede phase change, removed [1].

The liquid film is almost always in contact with a mixture of its
own vapor and air. The fundamental studies on which the design of
such devices is based, however, often do not distinguish between
different compositions of the gas phase. The experimental studies

are typically performed in geometries that are not sealed and
hence contain air at atmospheric pressure, while most theoretical
studies ignore phase change completely. Those that do consider
phase change use transport models of the gas phase that are too
crude to properly describe the effect of noncondensables on the
flow in the liquid layer. Yet, as a recent experimental study by Li
et al. [2] shows, noncondensables play an important and nontrivial
role, so the results in one limit cannot be simply extrapolated to
the other.

We have introduced a proper two-sided model for volatile fluids
which provides a detailed description of heat and mass transport in
both the liquid and the gas phase dominated by noncondensables
in a separate paper [3]. This model, as well as previous experimen-
tal studies of volatile and nonvolatile fluids by Villers and Platten
[4], De Saedeleer et al. [5], Garcimartin et al. [6], Riley and Neitzel
[7] and Li et al. [2], shows that volatile and nonvolatile fluids have
similar behavior at atmospheric conditions. At dynamic Bond num-
bers of order unity, the flow in the liquid layer is relatively fast and
transitions from a steady unicellular pattern (featuring one big
convection roll) to a steady multicellular pattern (featuring multi-
ple steady convection rolls) to an oscillatory pattern (featuring
multiple unsteady convection rolls) as the applied temperature
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(Z. Tuković), roman.grigoriev@physics.gatech.edu (R.O. Grigoriev).

International Journal of Heat and Mass Transfer 80 (2015) 38–49

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2014.08.068&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.08.068
mailto:tongran@gatech.edu
mailto:zeljko.tukovic@fsb.hr
mailto:roman.grigoriev@physics.gatech.edu
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.08.068
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


gradient is increased. Numerical studies of nonvolatile fluids by
Villers and Platten [4], Ben Hadid and Roux [8], Mundrane and
Zebib [9], Lu and Zhuang [10], and Shevtsova et al. [11] come to
the same basic conclusion, justifying the use of one-sided models
in the limit where the gas phase is dominated by noncondensables.

Here our focus is on the opposite limit, where the gas phase is
dominated by vapors rather than noncondensables. As the
experiments of Li et al. [2] conducted for a volatile silicone oil at
dynamic Bond numbers BoD � 1 demonstrate, transitions between
different convection patterns are suppressed under vapor, and the
flow structure remains the same (i.e., qualitatively similar to the
unicellular flow under air) when the magnitude of the applied tem-
perature gradient is varied. Moreover, in the vapor-dominated
limit, the flow speeds were found to be comparable to those in
the air-dominated limit, although existing transport models pre-
dict that the flow speeds in the absence of noncondensables should
decrease substantially.

Proper interpretation of these experimental observation
requires fundamental understanding of two-phase flows in con-
fined geometries in the (near) absence of noncondensables, which
is currently lacking. There are very few theoretical studies of this
limit. Zhang et al. [12] performed an analytical investigation of a
model of a sealed rectangular heat-pipe with pure vapor (no air)
above an essentially flat liquid layer. Their model, however, was
based on a large number of assumptions (Stokes flow, negligible
buoyancy, negligible advective fluxes, infinite evaporation and
Marangoni numbers) that do not hold for the experimental studies
[2]. Kuznetzov and Sitnikov [13] and Kaya and Goldak [14] pro-
posed and numerically investigated models of heat pipes which
do not include buoyancy or Marangoni effects, do not conserve
mass, and treat the liquid phase in a very restrictive way (as Darcy
or lubrication flow). Kafeel and Turan [15] and Fadhl et al. [16] pro-
posed and investigated crude models of thermosyphons which
treat the fluid as a mixture of the liquid and vapor phase, with
phase change occurring in the bulk rather than at a (non-existing)
interface.

To address this deficit, we introduce a comprehensive two-
sided model of two-phase flow of a volatile fluid in confined and
sealed geometries due to an applied temperature gradient in the
absence of noncondensables. This model is described in detail in
Section 2. Results of the numerical investigations of this model
are presented, analyzed, and compared with experimental findings
in Section 3. Finally, Section 4 presents our conclusions.

2. Mathematical model

2.1. Governing equations

The vast majority of theoretical studies of buoyancy-thermo-
capillary convection is based on one-sided models where heat
and mass transport in the gas phase are not solved for directly,
but rather are incorporated indirectly through boundary condi-
tions at the liquid–vapor interface. As we have shown using a
two-sided model [3] which describes heat and mass transport in
both phases, Newton’s law of cooling, which is the basis of most
one-sided models, is generally invalid for convection at atmo-
spheric conditions. Hence, there is no reason, a priori, to believe
that it should hold in the absence of noncondensables. In order
to describe convection in volatile fluids in the absence of noncon-
densables, the heat and mass transport in both phases must be
modeled explicitly.

Zhang et al. [12] have previously formulated a two-sided model
for the problem considered here in the limit of vanishing Reynolds
number and infinite Marangoni and evaporation numbers [17] and
obtained an analytical solution for the case of a pinned contact line

and an essentially flat interface. Unfortunately, almost none of
these assumptions actually hold in the experiments of Li et al.
[2], requiring development of a general two-sided model that does
not rely on any of these assumptions. Such a model, based on the
one described in Ref. [3] is presented below.

Both the liquid and the gas phases can be considered incom-
pressible, since the fluid velocities u are much smaller than the
speed of sound at small length scales. Hence the continuity
equation reduces to r � u ¼ 0. Because the fluid velocities can,
however, be large enough for inertial effects to be significant, the
momentum transport in the bulk should be described by the
Navier–Stokes equation

q @tuþ u � ruð Þ ¼ �rpþ lr2uþ q Tð Þg ð1Þ

where p and T are the fluid pressure and temperature, q and l are
the fluid’s density and viscosity, respectively, and g is the gravita-
tional acceleration.

Following standard practice, we use the Boussinesq approxima-
tion, retaining the temperature dependence only in the last term to
represent the buoyancy force. This is consistent with the assump-
tion of incompressibility, since the relative change in the density
due to temperature variation is usually quite small: less than
10% for the vapor and less than 4% for the liquid in the examples
considered below. (To verify the validity of this approximation,
we also performed the simulations with temperature dependence
included for all material parameters and found only minor differ-
ences in the results.) Specifically, in the liquid phase

ql ¼ q�l ½1� bl T � T�ð Þ�; ð2Þ

where q�l is the reference density at the reference temperature T�

and bl ¼ �ð@ql=@TÞ=ql is the coefficient of thermal expansion. Here
and below, subscripts l;v and i denote properties of the liquid and
vapor phase, and the liquid–vapor interface, respectively. For the
vapor, which is assumed to be an ideal gas,

qv ¼ pv=RvT; ð3Þ

where Rv ¼ R=Mv ;R is the universal gas constant, and Mv is the
molar mass.

The total mass of fluid in a sealed geometry is conserved,Z
liquid

qldV þ
Z

gas
qvdV ¼ mt ; ð4Þ

where mt is the total mass of the working fluid in both phases. The
densities of liquid and vapor are related to the temperature and
pressure through (2) and (3). Furthermore, the solution of the
Navier–Stokes equation defines the pressure field p up to a constant
po, so that absolute pressure is

pv ¼ pþ po; ð5Þ

where the pressure offset po can be computed from (4):

po ¼
Z

gas

1
RvT

dV
� ��1

mt �
Z

liquid
qldV �

Z
gas

p
RvT

dV
� �

: ð6Þ

Finally, the transport of heat is described using an advection–
diffusion equation

@tT þ u � rT ¼ ar2T; ð7Þ

where a ¼ k=qCp is the thermal diffusivity, k is the thermal conduc-
tivity, and Cp is the heat capacity, of the fluid. The inclusion of
advection terms in both transport equations can be justified by
computing the Reynolds and thermal Peclet numbers, presented
below in Table 5.

T. Qin et al. / International Journal of Heat and Mass Transfer 80 (2015) 38–49 39



Download English Version:

https://daneshyari.com/en/article/657245

Download Persian Version:

https://daneshyari.com/article/657245

Daneshyari.com

https://daneshyari.com/en/article/657245
https://daneshyari.com/article/657245
https://daneshyari.com

