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a b s t r a c t

We study the linear stability of a condensing thin liquid film of a binary vapor mixture by solving directly
the bulk equations of the gas phase. The boundary layer of a finite thickness is introduced above the
liquid film, within which the variables are disturbed. The dynamics of the liquid film is described by
the long-wave equation. The neutral stability condition predicts the existence of a critical thickness
below which a flat film is stable due to the mass gain effect. However, if we consider the thickening of
the liquid film by condensation, the relative neutral stability can be defined such that the growth rate
of a disturbance is equal to that of the basic film thickness. The critical thickness and wavenumber
obtained from the relative neutral stability condition significantly change from the original ones. Employ-
ing the asymptotic analysis for large wavenumbers, the critical thickness and wavelength are numerically
calculated for the water–ethanol system. Their dependence on the boundary layer thickness, temperature
and ambient vapor concentration is investigated. The critical wavelength obtained from our theory has
the same trend in the temperature and concentration as the initial drop distance observed in the
experiment.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the first appearance of Marangoni dropwise condensation
[1], a number of experimental studies have been devoted to con-
densation of binary vapor mixtures to observe nonfilmwise con-
densation [2–5]. In contrast, there are few theoretical works on
Marangoni dropwise condensation. Among them, Hijikata et al.
[6] investigated the stability of a flat condensate of a binary vapor
mixture. Recently, we modeled the dynamics of a condensate
liquid film of a binary vapor mixture using the long-wave approx-
imation and the linear stability analysis was carried out based on
this model [7]. In both studies the vapor concentration gradient
at the liquid–vapor interface in the vertical direction is assumed
to be proportional to the concentration difference between the
ambient vapor and interface, which is an analogue of well-known
Newton’s law of cooling for heat transfer. However, if a flat con-
densate is disturbed the vapor concentration also fluctuates along
the liquid–vapor interface. This fluctuation makes the vapor con-
centration diffuse along the interface. The diffusion of the vapor
concentration was disregarded in the above models [6,7].

In the modeling of an evaporating liquid film, Sultan et al. [8,9]
took into account static diffusion of the vapor in the long-wave
equation describing the spatio-temporal evolution of the film
thickness [10,11] by solving the Laplace equation for the vapor
concentration. Recently, we proposed a model including advective
effects due to the evaporation flow of the gas [12]. In this model, a
rather ad hoc model is applied to the vertical diffusion term of the
mass transport equation.

In this work, we study the linear stability of a condensing thin
liquid film of a binary vapor mixture by solving directly the bulk
equations of the gas phase without applying any model to the
vapor concentration. As in the previous studies [7,12,13], the
boundary layer of a finite thickness is introduced above the liquid
layer, within which the variables are disturbed. Then the distur-
bances in the gas phase are coupled with that of the film thickness
of the condensate, which is described by the long-wave equation
[7,11]. Here for simplicity the frozen-time approach is adopted,
where the linear stability analysis is carried out against the ‘hypo-
thetically motionless’ interface at each instance or film thickness
(of course in reality the interface is moving owing to condensa-
tion). As a result, the neutral stability condition is obtained by set-
ting the growth rate of the disturbances to zero. Since the effect of
mass gain is stabilizing, there is a critical thickness below which a
flat film is stable. However, if the condensate is sufficiently thin

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.08.083
0017-9310/� 2014 Elsevier Ltd. All rights reserved.

⇑ Tel./fax: +81 45 339 3897.
E-mail address: kentaro@ynu.ac.jp

International Journal of Heat and Mass Transfer 80 (2015) 199–205

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2014.08.083&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.08.083
mailto:kentaro@ynu.ac.jp
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.08.083
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


(about 1 lm), the temporal evolution of the average film thickness
becomes comparable to that of the disturbances. In this case, it is
insufficient to address only the growth rate of the disturbances:
we have to consider the evolution of the ratio of the amplitude
of the disturbance of the film thickness to the average film thick-
ness. If this ratio temporarily increases (decreases), it follows that
the disturbance grows (decays) relatively to the average film thick-
ening. Thus the relative neutral stability can be defined such that
the time derivative of this ratio vanishes. We will show that this
definition of the neutral stability significantly changes the critical
thickness and wavenumber compared to the original ones. The
dependence of the critical thickness and wavelength on the bound-
ary layer thickness, temperature and ambient vapor concentration
is investigated. A comparison is made with the experimental result
for the water–ethanol system [5].

2. Formulation

We consider a two-dimensional condensate liquid film of a
binary vapor mixture on a uniformly-cooled horizontal wall, as
depicted in Fig. 1. The x-axis coincides with the liquid–solid
boundary and the z-axis points vertically upward to the wall. The
mass fraction of the surrounding vapor is fixed to c0 at some dis-
tance d from the average height of the liquid–gas interface; here
d is assumed to be much larger than the thickness of the film h
so that the former is never affected by the variation of the latter.
We scale lengths, time, velocities and pressure of the gas phase
by dl; d

2
l =ml, ml=dl and qvm2

l =d2
l , respectively, where dl; ml, and qv

are the initial film thickness, the kinematic viscosity of the liquid,
and the vapor density, respectively. The dimensionless governing
equations in the gas phase are the continuity, Navier–Stokes, and
mass transport equations:

r � vv ¼ 0; ð1aÞ
@tvv þ vv � rvv ¼ �rpv þ mr2vv � Gez; ð1bÞ
Rvð@tcv þ vv � rcvÞ ¼ mr2cv ; ð1cÞ

where vv ¼ ðuv ;wvÞ;pv , and cv are the velocity, pressure, and mass
concentration of the component having a lower boiling point in the
gas, respectively. The differential operator is r � ð@x; @zÞ. The sym-
bols m ¼ mv=ml;G ¼ gd3

l =m2
l , and Rv ¼ mv=Dv denote the kinematic

viscosity ratio, the Galileo number, and the Schmidt number of
the vapor, where mv ; g, and Dv are the kinematic viscosity, the grav-
itational acceleration, and mass diffusivity of the gas phase, and ez is
the unit vector in the z direction. In Eqs. (1a) and (1b) we have
neglected the concentration dependence of qv and mv considering
a small concentration difference between the ambient vapor and
liquid–gas interface or a small condensation rate. In Eq. (1b) buoy-
ancy has been neglected; however, we shall discuss its influence on

the stability of the liquid film in Appendix A. In addition we have
neglected also thermo-diffusion and diffusion-thermo effects.

For the liquid phase, the following long-wave equation for the
film thickness hðx; tÞ and mass transport equation hold [11]:

@th ¼ @x
h3

3
ðG@xh� S@xxxhÞ � h2

2
Ma@xTI

( )
þ CJ; ð1dÞ

Rlð@tcl þ v l � rclÞ ¼ r2cl; ð1eÞ

where the subscripts l and I refer to the liquid and interfacial coun-
terparts of the same symbol. The dimensionless numbers are
defined by

S ¼ rdl

glml
; Ma ¼ � dlLqvDv

glmlkl

@r
@T
þ @r
@cl

@cl

@T

� �
; C ¼ qvDv

gl
; ð2Þ

which characterize the effects of surface tension, thermo- and sol-
uto-capillarity, and mass gain, respectively. Here, r is the surface
tension, gl is the dynamic viscosity of the liquid, L is the latent heat
and kl is the thermal conductivity of the liquid. The condensation
mass flux Jðx; tÞ and interface temperature TIðx; tÞ have been nondi-
mensionalized by qvDv=dl and LqvDv=kl. We assume the linear tem-
perature profile across the liquid film, which is a natural
consequence of the long-wave approximation (see for example
Ref. [11]). Since the heat flux in the liquid balances with the latent
heat (the heat flux in the gas is negligible), the interface tempera-
ture can be written as

TI ¼ Jh: ð3Þ

where the wall temperature has been assumed to be constant and
set to 0. For simplicity, we shall neglect the gravitational term in
Eq. (1d) by setting G ¼ 0, which is normally justified for very thin
films (say a few micrometers’ thickness).

At the top of the gas boundary layer (z ¼ 1þ D; D ¼ d=dl), we
impose the stress-free and constant pressure and concentration
boundary conditions,

@zuv þ @xwv ¼ 0; pv ¼ 0; cv ¼ c0; ð4aÞ

where the dimensionless pressure has been set to 0 there. At the
wall (z ¼ 0), the reflecting concentration boundary condition holds

@zcl ¼ 0: ð4bÞ

At the liquid–gas interface (z ¼ hðx; tÞ), the conservation laws of the
total mass and that of one component and the continuity of the tan-
gential velocity along the interface read

� mJ ¼ Rvvv � n; ð4cÞ
rcl � nþ clJ ¼ rcv � nþ cv J: ð4dÞ
v l � t ¼ vv � t: ð4eÞ

Here n ¼ ð�@xh;1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@xhÞ2

q
and t ¼ ð1; @xhÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@xhÞ2

q
are

the unit vectors normal and tangent to the interface. In Eq. (4c)
we have neglected the interface velocity compared to the vertical
vapor velocity. As in our previous study [7], we employ the linear-
ized local thermodynamic equilibrium conditions at the interface:

clI ¼ clr þ c0lðTI � TrÞ; ð4fÞ
cv I ¼ cvr þ c0vðTI � TrÞ; ð4gÞ

where clr and cvr are the liquid and vapor concentrations in the
thermodynamic equilibrium state at the reference temperature Tr ,
and c0l and c0v are the temperature derivatives of the liquid and vapor
concentrations. Although the reference temperature was set to the
wall one in our previous study [7], it will be found to be more con-
venient to fix the initial interface temperature rather than the wall
one in the present analysis. For this reason in this study we shall set
the reference temperature to the initial interface one.
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Fig. 1. Sketch of a condensate liquid film of a binary vapor mixture on a cooled
horizontal surface.
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