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a b s t r a c t

While sub-continuum heat conduction becomes more important as the size of micro/nanodevices keeps
shrinking under the mean free path of heat carriers, its computation still remains challenging to the gen-
eral engineering community due to the lack of easily accessible numerical simulation tools. To address
this challenge, this article reports the finite element analysis (FEA) of transient ballistic–diffusive phonon
heat transport in a two-dimensional domain using a commercial package (COMSOL Multiphysics). The
Boltzmann transport equation under the gray relaxation-time approximation was numerically solved
by discretizing the angular domain with the discrete ordinate method (DOM) and the spatial domain with
the FEA. The DOM-FEA method was validated by comparing the results with different benchmark studies,
such as the equation of phonon radiative transfer, the ballistic–diffusive equation, and the finite differ-
ence method of the phonon Boltzmann transport equation. The calculation of phonon heat transport
for a 2-D square slab reveals that heat conduction becomes more ballistic with temperature jumps at
boundaries as Knudsen number (Kn) increases. The ballistic nature also significantly affects transient
thermal behaviors at high Kn numbers. The obtained results clearly demonstrate the capability of the
DOM-FEA as a promising engineering tool for calculating sub-continuum phonon heat transport.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For the last two centuries, the conventional Fourier heat con-
duction equation has been used for modeling a diffusive nature
of macroscale heat conduction by considering the energy conserva-
tion and Fourier’s linear approximation of heat flux. However, it
cannot accurately predict heat transport when the length scale is
comparable to or smaller than the mean free path of thermal
energy carriers or when the time scale is shorter than the carrier
relaxation time [1–4]. When considering phonons as the dominant
energy carrier of heat conduction, the Boltzmann transport equa-
tion (BTE) for phonons, or equivalently the equation of phonon
radiative transport (EPRT), has been implemented to predict pho-
non heat transport in the sub-continuum space and time domains
[5,6]. Majumdar’s group [7,8] was the first who derived the EPRT
from the BTE and proved its analogy with the radiative transport
equation (RTE). By calculating the temperature profile and heat
flux in a thin film from the one-dimensional (1-D) EPRT, they

showed that the EPRT can describe a ballistic feature of phonon
heat transport for the sub-continuum spatial and time scales. The
EPRT has been also used to calculate the thermal boundary resis-
tance across the interface of a thin film on a substrate [9], across
interfaces of superlattices [10], and across mesoscopic constric-
tions at cylinder–substrate and sphere–substrate interfaces [11].
Narumanchi et al. [12] solved the transient two-dimensional (2-
D) BTE under the gray relaxation-time approximation to study
the effect of an unsteady, localized hot spot to phonon heat trans-
port. In the following work, they considered frequency-dependent
interactions between transverse and longitudinal acoustic phonons
and optical phonons to incorporate more realistic phonon disper-
sion relations in silicon thin films [13]. The transient 1-D BTE with
frequency- and polarization-dependence was also solved in Ref.
[14] to better understand how phonon mean free paths can be
extracted from the transient thermoreflectance experiment.

It should be noted that the BTE is inherently difficult to solve,
particularly when the full physics of phonon dispersion and
scattering is to be considered, due to its integro-differential formu-
lation. However, the analogy between the phonon BTE (or EPRT)
and the RTE has allowed the extension of several numerical
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schemes originally developed to solve the RTE to the computation
of the phonon BTE [5]. Such methods include the finite volume
method (FVM) [11–13,15–17], the finite element analysis (FEA)
[18–20], and the finite difference method (FDM) [7,8,14,21],
combined with the discrete ordinate method (DOM) for angular
discretization. In addition, the ballistic–diffusive approximation
of the BTE has been introduced to alleviate computational com-
plexities in directly solving the BTE while conveying the ballis-
tic–diffusive features of phonon heat transport [21–24]. The
advancement of computing power has also allowed the implemen-
tation of computation-intensive numerical methods, such as the
molecular dynamics (MD) [25,26], Monte Carlo simulation [27–
30] and the lattice Boltzmann method [31–33]. Recently, Yamada
et al. [34] applied the dissipative particle dynamics with energy
conversion, a coarse-grained MD simulation, to simulate heat con-
duction in a thin film with a less computational cost than the MD.

Although significant advances have been made in computing
sub-continuum heat transfer, most of the aforementioned numeri-
cal approaches are not readily accessible to the general engineering
community. It often requires too much time and effort to develop a
home-built code, preventing the routine computation of sub-con-
tinuum phonon heat transport for the reliable design of micro/nan-
odevices and their performance evaluations. To overcome this
challenge, the present study implements a commercial FEA pack-
age, COMSOL Multiphysics, to numerically solve the 2-D transient
BTE. Although the COMSOL package has been used to compute
the BTE [19,20], their works have been restricted to 1-D thin films.
Since the BTE has a directional dependence, the DOM was com-
bined to discretize the BTE in the angular direction [21]. The details
of the numerical scheme are described in the consecutive section.
In the results and discussion, the DOM-FEA is verified by compar-
ing the numerically obtained temperature distribution along the
centerline of a long rectangular domain with the semi-analytical
solution of the 1-D EPRT [2]. The obtained results for 2-D geometry
are also compared with DOM-FDM and ballistic diffusive equations
(BDE) results from Ref. [21]. We also discuss steady and transient
temperature distributions and related heat fluxes in a 2-D square
slab for a wide range of Knudsen numbers, when an illustrative
boundary condition has a hot temperature on the top surface while
the other surfaces remain at a cold temperature.

2. Computation model

It is well known that phonons follow the Bose–Einstein statis-
tics and interact with other phonons, electrons, and defects via
scattering processes. Since BTE can model the statistical distribu-
tion of particle interactions via short-range forces, it is a valid
and useful tool for studying classical size effects on phonon
transport. In general, the BTE is a complicated nonlinear integro-
differential equation and can be simplified with the gray relaxa-
tion-time approximation [5]:

@f
@t
þ vg � rf ¼ f 0 � f

s
ð1Þ

where f is the frequency-dependent distribution function of pho-
nons, vg is the averaged phonon group velocity, f0 is the equilibrium
distribution function, and s is the effective relaxation time due to all
phonon-scattering processes. The equilibrium distribution function
of phonons follows the Bose–Einstein distribution, f0 = 1/[exp(⁄x/
kBT) � 1], where ⁄ is the reduced Planck constant, x is the angular
frequency, kB is the Boltzmann constant, and T is temperature. It
should be noted that the right-hand side of the equation denotes
gray phonon-scattering with a single phonon velocity vg in all direc-
tions and a single phonon relaxation time s. Despite its simple form,
the gray relaxation time approximation has proven to provide
insight on phonon transport behaviors with an acceptable accuracy
[11,13]. The BTE can be formulated with the phonon energy density
as [5,35]
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The directional phonon energy density at position r and in direction
ŝ (J/m3-Sr) is defined as
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where Dp(x) is the phonon density of state, xD is the Debye cutoff
frequency, and the subscript p is the phonon polarization. The
generation term _qvol represents the phonon source term due to elec-
tron–phonon scattering [21]. The phonon energy density at equilib-
rium, e000, can be determined from the following equation:

Nomenclature

C volumetric heat capacity (J/K-m3)
Dp phonon density of state (m�3)
e�0 nondimensional emissive power
e00 directional energy density (J/m3 Sr)
e000 equilibrium energy density (J/m3)
En exponential integral
f phonon distribution function
f0 phonon distribution function at equilibrium
H height of the 2-D domain (m)
Kn Knudsen number
L length of the 2-D domain (m)
n̂ outward-pointing normal from the domain
q00 heat flux (W/m2)
r̂ position vector
ŝ direction vector
t time (s)
T temperature (K)
vg phonon group velocity (m/s)
w weight function of Gaussian quadrature

Greek symbols
h polar angle (rad)
H dimensionless temperature
K phonon mean free path (m)
s relaxation time (s)
l directional cosine
n optical thickness
u azimuthal angle (rad)
x angular frequency (s�1)
X solid angle (Sr)

Subscripts and superscripts
b boundary
m azimuthal angle distribution
n polar angle distribution
p phonon
r direction
SS steady state
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