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a b s t r a c t

We formulate new multi-phase convective heat transfer equations by combining the three-dimensional
(3D) Navier–Stokes equations, the energy equation and the Cahn–Hilliard equation for the phase field
variable /ðx; tÞ. The density, viscosity, heat capacity and conductivity are functions of /ðx; tÞ. The equa-
tions are solved in time with a splitting scheme that decouples the flow and temperature variables, yield-
ing time-independent coefficient matrices after discretization, which can be computed during pre-
processing. Here, a spectral element method is employed for spatial discretization but any other Eulerian
grid discretization scheme is also suitable. We test the new method in several 3D benchmark problems
for convergence in time/space including a conjugate heat transfer problem and also for a realistic tran-
sient cooling of a 3D hot object in a cavity with a moving air–water interface. These applications demon-
strate the efficiency of the new method in simulating 3D multi-phase convective heat transfer on
stationary grids, different modes of heat transfer (e.g. convection/conduction), as well as its robustness
in handling different fluids with large contrasts in physical properties.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer in conjunction with multi-phase flow is ubiqui-
tous in many engineering and scientific applications involving
phase change, distillation, extraction, absorption and drying. The
modeling and numerical simulation of multi-phase flow systems
have therefore been the subject of numerous theoretical and
computational studies [1–5].

The common modeling approaches can be broadly divided into
two basic types of sharp- and diffuse-interface models. The sharp-
interface models assume a zero-thickness layer that separates
the two fluids. This layer is endowed with properties such as sur-
face tension, and matching boundary conditions are imposed on
either side of this surface. For numerical simulation of two-phase
flow systems with sharp-interface models, moving-grid methods
are commonly used with conformal elements on either side of
the interface [6,7]. However, the possibility of mesh entanglement
restricts the moving-grid approaches to cases with mild deforma-
tion of the interface. Such a limitation forbids any morphological
changes, unless a new grid is generated ‘‘on-the-fly’’, which
significantly hampers the efficiency of the method.

More recently, Smoothed Particle Hydrodynamics (SPH) has
also been successfully used in modeling two-phase flow system.
The SPH model employs a purely Lagrangian viewpoint in which
the particles are moving as interpolation points, and the inner-
particle forces (viscous, pressure, etc.) are calculated by smoothing
the properties of its neighboring particles while satisfying the
Navier–Stokes equations. This approach provides a suitable frame-
work for tracking different phases, in multi-phase flow systems.
For the application of SPH method in multi-phase flow systems
see for instance [8–10].

The diffuse-interface models, however, assume a finite-
thickness layer between the two phases. The interfacial tension
between the two fluids spreads over this narrow layer. This
approach yields a unified set of governing equations for two
phases, instead of formulating the flow in two separate domains.
Numerical methods such as Volume-of-Fluid (VOF) [11–14] and
level-set [14–16] have been successfully employed by utilizing
diffuse-interface models to simulate two-phase systems.

From the modeling perspective, the energy-based variational
framework of phase-field formulation makes it a thermodynami-
cally-consistent and physically attractive approach to modeled
multi-phase flow systems (see for instance [17]). Unlike the
level-set model, where an artificial smoothing function is pre-
scribed for the interface, the Cahn–Hilliard model describes the
interface by a mixing energy, and in that sense, the phase-field
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model can be viewed as a physically motivated level-set method.
The energy-based description of phase-field model can also allow
complex rheology of non-Newtonian fluids to be easily incorpo-
rated into the formulation [18]. On the other hand, from the
numerical viewpoint, the phase-field method provides a single
set of partial differential equations for two phases that can be
discretized on a fixed grid in an Eulerian framework. It can also
handle morphological changes such as breakup, coalescence and
reconnection, which extends the application of the method to com-
plex two-phase flow systems. An example of a 2D simulation of a
cold water jet impinging on a hot air–water interface is shown in
Fig. 1. Initially we have cold water (10 �C) issuing from the middle
of the upper wall. Hot water (50 �C) fills up the bottom half of the
domain. There are two outlets at the two corners of the upper wall.
Upper and lower walls assume adiabatic temperature boundary
conditions and periodic in horizontal direction. As shown in
Fig. 1(b), blue color represents water, which corresponds to
/ðx; tÞ ¼ �1, while white color represents air, which corresponds
to /ðx; tÞ ¼ 1. The interface between water and air is provided by
the solution of /ðx; tÞ from the Cahn–Hilliard equation but not
tracked, which is different from the interface tracking/capturing
techniques.

However, there are several challenges in the numerical simula-
tion of the Cahn-Hilliard equation coupled with convective heat
transfer equations that must be remedied for the model to be used
in realistic applications. In cases with large thermal conductivity
and density ratios, the discretization of the phase-field formulation
combined with heat transfer equations leads to highly stiff discrete
systems, causing numerical stability issues. The cases with large
ratios of physical properties are plentiful in realistic applications
such as water–air systems or most systems where phase change
is involved. On the other hand, the phase-field formulation renders
physical properties (such as density, thermal conductivity, viscos-
ity, . . .) as time-dependent variables through their dependence on
the phase field /ðx; tÞ. The time-dependence of these properties
makes the coefficient matrices time-dependent accordingly,
requiring an expensive computing/assembling of these matrices
at each time step, and thus significantly hampering the numerical
efficiency of the algorithm. Moreover, the convective heat transfer
equations combined with Cahn-Hilliard equation form a fully cou-
pled system of partial differential equations. Hence, a de-coupling
strategy is very desirable in order to avoid the high computational
cost incurred by solving such a coupled system of equations.

Among the existing methods of discretizing the phase-field for-
mulation for convective heat transfer problems, the spectral/hp
element method, in particular, is very promising [19]. The smooth
transition of phase field and physical properties between the two
phases makes this method compliant with sufficient regularity

required in spectral-type element discretizations. The low
dispersion error of spectral/hp discretization compared to
low-order methods is also attractive in convection-dominated
problems. For more details on spectral/hp element method see
reference [20]. However, any other finite difference, finite volume
or finite element method can be combined with the approach
proposed here.

In this paper we present an efficient numerical algorithm for
discretizing multi-phase convective heat transfer equations. We
employ a splitting scheme as a decoupling strategy to efficiently
solve the system of PDEs obtained from phase-field formulation.
Our method results in time-independent coefficient matrices that
can be pre-computed during the pre-processing. We verify our
method by comparing the numerical results with analytical solu-
tions. We also demonstrate the capability of our method by simu-
lating the flow of a water–air system with density ratio of 1000
around a hot object.

This paper is organized as follows. In the next section we
develop the numerical algorithm for discretizing multi-phase con-
vective heat transfer equation using the phase-field methodology.
In the third section, we demonstrate the spatial and time conver-
gence of the proposed method. In the fourth section, we verify
the accuracy of the numerical temperature field with an exact solu-
tion for a two-phase flow convection problem in a pipe and a con-
jugate heat transfer problem in a channel. In the last section we
show the results of simulation of a transient cooling of a hot object
immersed in water–air flow with a moving interface.

2. Numerical method

2.1. Governing equations and boundary conditions

Let X denote an open bounded domain in two or three dimen-
sions (2-D or 3-D), and let @X denote its boundary. We consider a
mixture of two immiscible incompressible fluids, with different
viscous and thermal properties, contained in X. Let q1 and q2,
respectively, denote the densities of the two fluids, l1 and l2

denote their dynamic viscosities, c1 and c2 denote their specific
heat coefficients, and k1 and k2 denote their thermal conductivities.
We assume that there is no phase change in the system. This two-
phase system can be described by the following system of
equations:

q
@u
@t
þ u � ru

� �
¼ �rpþr � lðruþruTÞ

� �
� kr

� r/r/ð Þ þ fðx; tÞ; ð1aÞ

r � u ¼ 0; ð1bÞ

Fig. 1. Cold water jet 10 �C issuing from the middle of the upper wall into a hot air–water pool 50 �C: (a) temperature snapshot; (b) air–water interface snapshot in terms of
the phase field. Initially /ðx; tÞ ¼ 1 for air and /ðx; tÞ ¼ �1 for water; (c) velocity snapshot. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

X. Zheng et al. / International Journal of Heat and Mass Transfer 82 (2015) 282–298 283



Download English Version:

https://daneshyari.com/en/article/657347

Download Persian Version:

https://daneshyari.com/article/657347

Daneshyari.com

https://daneshyari.com/en/article/657347
https://daneshyari.com/article/657347
https://daneshyari.com

