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a b s t r a c t

Darcy’s law and the Brinkman equation are two main models used for creeping fluid flows inside moving
permeable particles. For these two models, the time derivative and the nonlinear convective terms of
fluid velocity are neglected in the momentum equation. In this paper, a new momentum equation includ-
ing these two terms are rigorously derived from the pore-scale microscopic equations by the volume-
averaging method. It is shown that Darcy’s law and the Brinkman equation can be reduced from the
derived equation under creeping flow conditions. Using the lattice Boltzmann equation (LBE) method,
the macroscopic equations are solved for the problem of a porous circular cylinder moving along the
centerline of a channel. Galilean invariance of the equations are investigated both with the intrinsic phase
averaged velocity and the phase averaged velocity. The results demonstrate that the commonly used
phase averaged velocity cannot be considered, while the intrinsic phase averaged velocity should be
chosen for porous particulate systems. In addition, the Poiseuille flow in a porous channel is simulated
using the LBE method with the improved equations, and good agreements are obtained when compared
with the finite-difference solutions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The motion of permeable particles in a fluid has long received
considerable attention in many fields such as colloid science,
chemical, biomedical and environmental engineering. Because
the fluid can penetrate into a permeable particle, there is a flow
relative to the rigid skeleton of the porous medium. The hydrody-
namic fields outside and inside the particles need to be treated
together, which differs much from those of solid impermeable
particles [1]. Numerous studies have been devoted to the
understanding of transport phenomena in moving porous media
for applications, such as sedimentation, agglomeration, flotation
and filtration.

In order to obtain the fluid velocity within a permeable particle,
conservation equations which accurately govern the fluid flows are
required for the permeable region [2]. Under creeping flow condi-
tions and considering the resistance force from the solid surface of
moving porous media, two models for the fluid motion within por-
ous media are commonly employed in the literature, i.e., Darcy’s
law and the Brinkman equation. Using the Stokes equation and

Darcy’s law, Payatakes and Dassios [3] investigated the motion of
a porous sphere toward a solid planar wall. Later, Burganos et al.
[4] provided a revision to their work with respect to the drag force
exerted on the permeable particle. Owing to the negligence of the
viscous dissipation term, the momentum equation for the interior
fluid of a porous medium involves only first-order spatial deriva-
tives in Darcy’s law, while the momentum equation for the outside
fluid includes spatial derivatives up to the second-order. This
brings out a general fact that Darcy’s law is confined to the case
that the permeability of the porous medium is sufficiently low.
Meanwhile, the continuity in both the fluid velocity and the stress
at the interface between the permeable medium and the exterior
fluid are not guaranteed [1]. Complementary boundary treatment
is hence needed to satisfy the continuity at the interface of a mov-
ing porous medium [5–8]. In contrast, in the Brinkman equation,
the velocity-gradient term corresponding to viscous dissipation
of the fluid within the porous medium is incorporated in the
momentum equation, and the continuity of the fluid velocity is ful-
filled at the surface of the porous body. From this point of view, the
Brinkman equation is more suitable than Darcy’s law in the porous
particulate systems.

Based on the Brinkman equation, numerous theoretical and
computational studies have been conducted concerning moving
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permeable particles. For example, Jones [9–11] calculated the
forces and torques on moving porous particles with a method of
reflection, and some studies were also carried out to investigate
the suspension flow of porous particles using the Brinkman equa-
tion with other accompanying methods [1,12–15]. Recently, the
Brinkman model was also employed to study the hydrodynamic
motion and interactions of composite particles [5,16–18].

In all of the aforementioned studies, the flow inside a moving
permeable particle is described using either Darcy’s law or the
Brinkman model. In these two models, the transient term and
the nonlinear inertial term are not included in the momentum
equation. It follows that there is no mechanism to treat the
unsteady evolution of flow fields, and the flow Reynolds number
for fluid flows must be kept sufficiently small. However, as noted
by Wood [19], the inertial effect on the flow and transport in por-
ous media should be considered in many practical applications. To
the best of our knowledge, no theoretical and numerical works
have been developed to address this limitation. A new model is
therefore desired for moving porous particulate systems at finite
flow Reynolds numbers.

On the other hand, due to the complexity of internal geometries
and interfacial structures, it is impractical to solve the microscopic
conservation equations inside the pores. A preferable approach
[20] is to average the microscopic equations inside porous particles
over a representative elementary volume (REV), the size of which
is assumed to be much larger than the characteristic size of pore
structures but much smaller than the domain. Evidence from the
literature indicates that a set of macroscopic equations at this scale
can be derived through a rigorous volume-averaging procedure
[21–23], such as the solidification process of multicomponent mix-
tures [24,25], the flow through the interdendritic mushy zone [26],
the non-Newtonian fluid flows in porous media [27], and the flow
in a stationary porous medium [28]. Based on the derived volume-
averaged continuity and momentum equations, Ochoa-Tapia and
Whitaker [29,30] developed certain jump conditions at the bound-
ary between a stationary porous medium and a homogeneous
fluid. To date, many efforts have been made to expand the averag-
ing theorems, and the development of averaging equations have
also been presented for porous medium systems [8,31–36]. How-
ever, it appears that a general form of the volume-averaged or
macroscopic momentum equation, where the transient as well as
the nonlinear inertial terms are included, has not yet been devel-
oped for a moving porous medium.

The foregoing review of the literature has prompted us to derive
more general governing equations for a moving porous medium,
using the volume-averaging procedure. This is the main objective
of the present work. Meanwhile, in addition to the phase average
velocity commonly used for porous flows [25,26,28,37], the intrin-
sic phase average velocity is also employed in the literature [38–
40]. For example, Yang et al. [39] recently used the intrinsic phase
average form of the flow velocity in the macroscopic equations,
while adopted the phase average form in the flow resistance term.
Similar disparity in the fluid velocity is also found in the momen-
tum equation used by Smit et al. [40]. One direct problem resulted
from such disparity is that the predicted phenomena are not per-
tained to the original porous media. In general, it is still not clear
which kind of volume-averaged velocity should be used, especially
for the case of moving porous media considered here. To our
knowledge, no studies on this issue have been reported till now.
This indicates the need for investigating the correct choice of flow
velocity from several possible volume-averaged velocities, which is
another objective of this work.

In the following, the averaging theorems regarding the time
derivatives and spatial derivatives are first presented. The macro-
scopic equations for the incompressible flow in a moving porous
medium are then derived. To solve the derived macroscopic

equations, a lattice Boltzmann equation (LBE) method [41–43] is
employed, and numerical simulations in two frames of reference
are carried out to investigate what kind of volume-averaged fluid
velocity should be chosen. The results show that Galilean invari-
ance of the macroscopic equations can be obtained only with the
intrinsic phase averaged velocity, while the use of the phase aver-
aged velocity will break the Galilean invariance.

2. The method of volume averaging

In this work, the macroscopic governing equations for the fluid
flow in a moving permeable body will be derived rigorously by
averaging the microscopic continuity and momentum equations
over an REV. To this end, the averaging theorems are needed to
relate the average of the derivative to the derivative of the average.
As shown in the literature [21–23,34,36,37,44], a number of
authors developed these theorems forming the basis of the vol-
ume-averaging method. In this section, we will briefly review the
invoked averaging theorems for subsequent derivations.

The flow in a moving porous medium is composed of fluid and
solid phases. Assume that the fluid phase occupies a volume of Vf

in a representative volume V within the porous medium. The vol-
ume occupied by the solid phase is hence Vs ¼ V � Vf . In the study
of multiphase transport process in porous media, the macroscopic
quantities are commonly defined by volume-averaging at the REV
scale. In order to obtain meaningful results, the involved three
length scales should satisfy the inequality

lp � lr � lm; ð1Þ

where lp is the microscopic scale associated with the pore space, lr is
the characteristic length of the averaging volume or area, and lm is
the characteristic length of the global system under study. The
length scale constraints ensure that the average quantities over
the REV will be insensitive to the size of the averaging region.

The volume averaged quantities are assigned to the centroid of
the REV, and three versions are in general distinguished with dif-
ferent definitions [37]. The first of these is the intrinsic phase aver-
age defined by

hwki
k ¼ 1

Vk

Z
Vk

wkdV ; ð2Þ

where Vk represents the volume of the k-phase within the represen-
tative volume V ;wk is a quantity associated with the k-phase, and
k 2 ff ; sg with ‘f’ and ‘s’ respectively denoting the fluid and solid
phases. The second is the phase average which is the most com-
monly encountered averaged quantity [22,23]

hwki ¼
1
V

Z
Vk

wkdV : ð3Þ

With the two definitions, one can obtain the following relation

hwki ¼ ekhwki
k
; ð4Þ

where ek ¼ Vk=V is the local volume fraction of the k-phase. The
third average is the spatial average of a quantity w given by

ŵ ¼ 1
V

Z
V

wdV ; ð5Þ

which assume w can be defined in both phases and the average is
taken over the fluid and solid phases. As noted elsewhere [30,37],
the spatial average appears as an unimportant variable especially
in the volume-averaged equations. Thus, our discussions on the
flow velocity in the macroscopic equations will focus on the other
two averages as defined above and consistently in this paper.

The macroscopic conservation equations are obtained by aver-
aging the microscopic equations over a representative volume,
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