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a b s t r a c t

In this paper we consider some unsteady free convection flows of a Bingham fluid when it saturates a
porous medium. These flows are induced by suddenly raising the constant temperature of a vertical
bounding surface from that of the uniform ambient value to a new constant level. As time progresses heat
conducts inwards and this induces flow. We consider both a semi-infinite domain and a vertical channel
of finite width. Of interest here are (i) how the presence of yield surfaces alters the classical results for
Newtonian flows and (ii) the manner in which the locations of the yield surfaces change as time
progresses.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Bingham fluids are fluids with a yield stress but which are
otherwise Newtonian, i.e. they have a linear stress–strain relation-
ship once the yield stress is exceeded. These fluids arise in a variety
of natural and industrial settings including the oil industry, agri-
culture and the food processing industry; see for example works
by Barnes [1], Jeong [2], Maßmeyer [3], Shenoy [4] and Sochi and
Blunt [5]. Other commonly-studied yield-stress fluids are Casson
fluids and Herschel–Bulkley fluids, and both of these have a nonlin-
ear stress/strain relationship post-yield.

There currently exists a fairly small body of work which consid-
ers the convection of a Bingham fluid. Many of these are concerned
with convection in sidewall-heated cavities which, for a Newto-
nian fluid, admit flow at all nonzero values of the Rayleigh. When
the cavity is filled with a Bingham fluid, flow is not possible until
the Rayleigh number is sufficiently large that buoyancy forces
are able to overcome the yield stress. In such contexts the critical
Rayleigh number appears to be a multiple of a convective Bingham
number. More detailed information may be gleaned from the
papers by Hassan et al. [6], Turan et al. [7–9], Vikhansky [10] and
Vola et al. [11].

More directly relevant to the present paper are the analyses of
Yang and Yeh [12] and Bayazitoglu et al. [13] who studied free con-
vection in a sidewall-heated channel. Once more, convection arises
whenever the Rayleigh number is sufficiently large, but the veloc-
ity profile is characterised by having two plugs of unyielded fluid
placed symmetrically about the centreline of the channel and mov-
ing in opposite directions — Karimfazli and Frigaard [14] refer to
this as a five-region flow because each plug is surrounded by yield-
ing fluid thereby giving five regions which alternate between yield-
ing and not yielding. The studies contained in [12,13] have been
extended in different directions. For example, Patel and Ingham
[15] also applied a driving pressure gradient and they describe
the transition from the five-region natural convection velocity pro-
file to the more familiar three-region Poiseuille profile where the
unyielded plug is in the centre of the channel. Barletta and Magyari
[16] consider free convection, but one of the boundaries moves
parallel with itself, a Couette flow. The free convective five-region
velocity profile also undergoes a transition to a three-region profile
as the velocity of the boundary increases, but now the two plugs
are attached to the boundaries with yielding fluid in-between.
Karimfazli and Frigaard [14] also consider free convection, but
the temperatures of the bounding surfaces increase linearly with
distance whilst maintaining a constant local difference. They
present a complicated scenario whereby the number of regions
within the velocity profile increases as the convective Bingham
number decreases towards zero; the caveat is that this happens
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only when the stratification parameter is above 7.8532, otherwise
a five-region flow which is similar to that of Yang and Yeh [12] is
obtained in the small convective Bingham number limit.

It is also important to mention the unsteady analysis of Kleppe
and Marner [17] who consider the boundary layer flow induced by
a semi-infinite uniformly hot surface; this is the Bingham-fluid
analogue of the Newtonian free convective boundary layer prob-
lem that was solved by Ostrach [18]. Using an unsteady solver
written for a Cartesian coordinate system, they determined the
evolution with time of an impulsive change in the temperature
of the bounding surface, and eventually obtained steady solutions
of a one-plug, three-region type.

While undertaking the preliminary literature review for the
chapter by Rees [19], which is concerned with the state-of-
the-art for convection of a Bingham fluid in a porous medium,
the very large number of papers which exists on yield stress fluids
in general includes only a relatively very small handful on convec-
tion in porous media and all of these are on boundary layer flows.
Perhaps the reason for such a void in the literature is a lack of obvi-
ous applications for the convection of a Bingham fluid in porous
media, but, as is always true for yield-stress fluids, there are
numerical difficulties associated with determining where the yield
surface is and perhaps this has deterred research on the topic.

The present paper is part of the beginning of an effort to fill that
void by considering an unsteady free convection problem. We will
consider the effect on a cold saturated porous medium of raising
suddenly the temperature of a vertical bounding surface to a
new constant level. Unlike the paper of Kleppe and Marner [17]
the present idealised configuration does not have a leading edge,
which means that the temperature and velocity field may be
described using a non-similar analysis, and boths fields are inde-
pendent of the vertical coordinate. Heat gradually diffuses from
the hot surface thereby introducing buoyancy forces, and if these
forces are sufficiently large then flow will arise. In this type of
problem the induced flow field may be found analytically, and it
is possible to determine the locations of the yield surfaces numer-
ically using a simple Newton–Raphson scheme. Two cases are
considered, namely convection in a semi-infinite domain and
convection in a channel of finite and constant thickness.

2. Governing equations

One of the earliest papers to consider the flow of a Bingham
fluid in a porous medium is that of Pascal [20]. He presented a

threshold gradient model based on experimental observations
which is the very simplest possible model that may be used. In
one dimension and for isothermal flow it may be written in the
form,

u ¼
�K

l
1� G
jpxj

� �
px when jpxj > G;

0 otherwise;
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: ð1Þ

where we use G to denote the threshold gradient (or threshold body
force) above which the fluid yields. We see that the fluid velocity
increases linearly with the pressure gradient, px, once the threshold
is exceeded. A commonly used but more complicated alternative is
the Buckingham–Reiner model (see [21–23]) which is given by,
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0 otherwise:
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It may be shown easily that the fluid velocity rises quadratically at
first once the threshold gradient is exceeded but this eventually
relaxes to a linear variation. In the present paper we will confine
our attention to the threshold model.

Once buoyancy is introduced as an extra body force, the thresh-
old model given in Eq. (1) becomes,

u¼
�K

l
1� G
jpx�qgbðT�T0Þj

� �
px�qgbðT�T0Þð Þ when jpx�qgbðT�T0Þj>G;

0 otherwise:

8<
:

ð3Þ

Here we have assumed that the Boussinesq approximation applies
when writing down the buoyancy term, and T0 is the initial temper-
ature of the porous medium. It is to be noted that we have also
assumed that the threshold gradient, G, is independent of tempera-
ture, and this is equivalent to having a temperature-independent
yield stress in the fluid. Exceptions to this situation include heavy
oils [24] where the fluid becomes Newtonian above the so-called
converting temperature.

In the above equations we have taken x to be the vertical coor-
dinate and u to be the Darcy velocity in the same direction. In this
idealised problem there will be no horizontal velocity, and there-
fore v ¼ 0. (If v had been nonzero then it would be necessary to
alter the yield criterion in Eq. (3) to obtain a pair of momentum
equations which are frame-invariant; see [19].) Therefore we
may allow u to be a function only of the horizontal coordinate, y,

Nomenclature

Latin letters
D equal to ln d
FðRbÞ location of the yield surface
g gravity
G threshold body force
K permeability
L length scale
p pressure
px pressure gradient in the x-direction
Q total vertical velocity flux
Ra Darcy–Rayleigh number
Rb Rees–Bingham number
t time
T temperature (dimensional)
T0 ambient (cold) temperature
T1 temperature of heated surface
u vertical Darcy velocity

x vertical coordinate
y horizontal coordinate
z dummy variable

Greek letters
a thermal diffusivity
b coefficient of cubical expansion
d defined in terms of Rb in Eq. (27)
g similarity variation
gy location of yield surface
h temperature (nondimensional)
l dynamic viscosity
q reference density
r heat capacity ratio

Other symbols
� dimensional quantities

D. Andrew S. Rees, A.P. Bassom / International Journal of Heat and Mass Transfer 82 (2015) 460–467 461



Download English Version:

https://daneshyari.com/en/article/657363

Download Persian Version:

https://daneshyari.com/article/657363

Daneshyari.com

https://daneshyari.com/en/article/657363
https://daneshyari.com/article/657363
https://daneshyari.com

