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a b s t r a c t

This work presents a study on free convection in a porous square cavity saturated with a Newtonian fluid.
Computations for laminar and turbulent flow are performed. Governing equations were time- and
volume averaged according to the double-decomposition concept. Discretization of governing equations
was obtained with the control-volume approach and the system of algebraic equation was relaxed via the
SIMPLE method. Two energy models were employed, namely the one- and two-temperature models.
Results indicated that when the ratio of thermal conductivities equals unity, both models give similar
results. However, the overall Nusselt number across the cavity is reduced as porosity or the thermal con-
ductivity ratio increases. A critical value for the Rayleigh number, understood as that when laminar and
turbulent solution differ by a substantial amount, was found to be a function of the thermal conductivity
ratio.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of heat transport across a porous cavity is already
widespread in the literature and there are many industrial applica-
tions for such analyses. However, most of the existing results are
concerned with laminar flows, which are an exception in the
industrial environment. In the majority of engineering flows of
practical relevance turbulent regime prevails and, as such, devel-
opment of more accurate models for turbulent free convection in
porous media can benefit the design and analysis of more efficient
engineering equipment.

Many studies have been published in the literature about lam-
inar flow in porous media: The monographs of Nield and Bejan [1]
and Ingham and Pop [2] fully documented the problem of a lami-
nar flow in a porous medium. The works of Walker and Homsy
[3], Bejan [4], Prasad and Kulacki [5], Beckermann et al. [6], Gross
et al. [7], Manole and Lage [8] and Moya et al. [9] have contributed
with some important results to the problem of natural convection
in a porous rectangular cavity. The work of Baytas and Pop [10],
concerned a numerical study of the steady free convection flow
in rectangular and oblique cavities filled with homogeneous
porous media using a nonlinear axis transformation.

Usually, modeling of macroscopic transport for incompressible
flows in rigid porous media has been based on the volume-average

methodology for either heat or mass transfer [11–14]. If fluctua-
tions in time are also of concern due the existence of turbulence
in the intra-pore space, a variety of mathematical models have
been published in the literature in the last decade. One of such
views, which entails simultaneous application of both time and
volume averaging operators to all governing equations, has been
organized and published in a book [15] that describes, in detail,
an idea known in the literature as the double-decomposition
concept (see Section 3, pgs. 27–32 in [15] for details). Paramount
contributions to turbulence modeling in porous media using
different approaches have been also published in the open
literature [16,17].

Extension of the double-decomposition theory of [15] for
treating turbulent natural convection in cavities using thermal
equilibrium [18] as well as a two temperature model [19] has also
been documented. In the literature, the use of the two-energy
equation model has also been considered for passive heat transfer
across differentially heated cavities [20].

Recently, Carvalho and de Lemos [21] studied turbulent free
convection in square porous cavity using the thermal equilibrium
model, or say, an average temperature was assumed to represent
both the fluid and the solid porous matrix. A number of analyses
were presented in [21] that were not included in [18], broaden,
as such, studies on passive turbulent heat transfer using the one-
energy equation model. Later, Carvalho and de Lemos [22] used
the two-energy equation model for analyzing laminar flows in
cavities. Therein, only laminar regime was investigated.
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Therefore, this purpose of this work is to extend the simulations
of Carvalho and de Lemos [21] considering now the thermal non-
equilibrium hypothesis of [22]. By extending the two-energy equa-
tion model to simulations of turbulent flows in porous cavities a
wide variety of important engineering systems of practical interest
can be modeled in a more realistic fashion.

2. Governing equations

The mathematical models here employed are based in the work
of [18] including now the assumption of Local Thermal Non-Equi-
librium (LTNE) or Two-temperature equation model for heat trans-
fer calculations [22]. As most of the theoretical development is
readily available in the open literature, the governing equations
will be just presented and details about their derivations can be
obtained in the above-mentioned papers. Essentially, local instan-
taneous equations are volume-averaged using appropriate mathe-
matical tools [23].

2.1. Macroscopic continuity equation

The macroscopic equation of continuity for an incompressible
fluid flowing through a porous medium is given by:

r � �uD ¼ 0 ð1Þ

where �uD is the time averaged surface velocity, also known as Darcy
velocity. In Eq. (1) the Dupuit–Forchheimer relationship, �uD ¼ /h�uii,
has been used where / is the porous medium porosity and h�uii

identifies the intrinsic (fluid phase) average of the local velocity
vector u [23].

2.2. Macroscopic momentum equation

The macroscopic momentum equation (Navier–Stokes) for an
incompressible fluid with constant properties flowing through a
porous medium can be written as:
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where the last two terms in Eq. (2) represent the Darcy and the
Forchheimer terms, respectively. The symbol K is the porous med-

ium permeability, cF = 0.55 is the form drag coefficient, h�pii is the
intrinsic average pressure of the fluid, q is the fluid density and l
represents the fluid viscosity. Gravity acceleration is defined by g
and b/ is the macroscopic thermal expansion coefficient defined

as b/ ¼
hqbðTf�Tref Þiv

q/ðhTf ii�Tref Þ
[18]. The term – q/hu0u0ii is known as the Macro-

scopic Reynolds Stress Tensor (MRST) and is given by:
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Nomenclature

Latin characters
cF Forchheimer coefficient
cp specific heat
d pore diameter
D D = [ru + (ru)T]/2, deformation rate tensor
Da Darcy number, Da ¼ K

H2

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144 Kð1�/Þ2

/3

r
, particle diameter

g gravity acceleration vector
Gi generation rate of hkii due to the action of the porous

matrix
Gi

b generation rate of hkii due to the buoyant effects
h heat transfer coefficient
H square height
I unit tensor
K permeability
kf fluid thermal conductivity
ks solid thermal conductivity
Kdisp conductivity tensor due to the dispersion
Ktor conductivity tensor due to the tortuosity
L cavity width
ni unit vector normal to the interfacial area Ai

Nu Nu = hL/Keff,Nusselt number
Nuw average Nusselt number at hot wall
Pr Prandtl number

Raf Raf ¼ gbH3DT
v f af

, fluid Rayleigh number

Ram Ram = Raf � Da = gb/HDTK
mf aeff

; Darcy–Rayleigh number

Racr critical Rayleigh number

ReD ReD ¼ j
�uD jD
mf

, Reynolds number based on the particle
diameter.

T temperature

u microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek characters
a thermal diffusivity
b thermal expansion coefficient
DV representative elementary volume
DVf fluid volume inside DV
e e ¼ lru0 : ðru0ÞT=q, dissipation rate of turbulent ki-

netic energy.
l dynamic viscosity
m kinematic viscosity
q density
r0s non-dimensional constants
/ / ¼ DVf =DV , porosity

Special characters
u general variable
�u time average
u0 time fluctuation
huii intrinsic average
huiv volume average
iu spatial deviation
|u| absolute value (Abs)
u general vector variable
ueff effective value, ueff = /uf + (1 � /)us

us,f solid/fluid
uH,C hot/cold
u/ macroscopic value

()T transpose

106 P.H.S. Carvalho, M.J.S. de Lemos / International Journal of Heat and Mass Transfer 79 (2014) 105–115



Download English Version:

https://daneshyari.com/en/article/657391

Download Persian Version:

https://daneshyari.com/article/657391

Daneshyari.com

https://daneshyari.com/en/article/657391
https://daneshyari.com/article/657391
https://daneshyari.com

