
Effect of bubble interactions on mass transfer in bubbly flow

B. Aboulhasanzadeh ⇑, G. Tryggvason
University of Notre Dame, Notre Dame, IN 46556, USA

a r t i c l e i n f o

Article history:
Received 17 March 2014
Received in revised form 8 August 2014
Accepted 8 August 2014
Available online 29 August 2014

Keywords:
Bubble columns
Computation
Mass transfer
Multiphase flow
Simulation
Transport process

a b s t r a c t

The effect of bubble interactions on mass transfer in a multi-bubble system is examined by numerical
simulations. Since mass transfer in the liquid phase of gas–liquid multiphase flows usually takes place
at a considerably slower rate than the transfer of momentum, the mass flux boundary layers are much
thinner than the momentum boundary layers. In direct numerical simulations the resolution require-
ments for flows with mass transfer are therefore considerably higher than for flows without mass trans-
fer. Here, we use a multiscale approach for the computations of the mass transfer near the bubble surface,
in order to reduce the cost, and examine the effect of void fraction and bubble Reynolds number on the
mass transfer from bubbles in periodic domains. Specifically, we compare results for a single bubble in a
periodic domain with results for several bubbles in a larger domain with the same void fraction. It is
shown that even though the average Reynolds number of freely moving bubbles drops after a while, in
most cases the mass transfer from the bubbles increases slightly. When the bubbles start to wobble, in
most cases the increase in bubble–bubble interactions compensate for the reduction in Reynolds number.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Bubble columns are one of the most important chemical
processing units in the petro-chemical industry and are used to
process millions of tons of material every year [10,14]. Bubble col-
umns generally are simple vertical cylinders containing liquids
with bubbles injected at the bottom. The bubbles rise due to
buoyancy, interact and mix the liquid and the dissolved gases
transferred from bubbles into the surrounding liquid, increasing
the reaction rate. In spite of their simple design, the physics in
bubble column reactors is complex. Today, we rely mostly on
experimental data and semi-analytical correlations for the design
of bubble columns, but with increased computational power and
the ability to use direct numerical simulation for understanding
of multiphase flow, computational studies should be able to help
improve the design and optimization of bubble columns.

Considerable research has already been done on the mass trans-
fer from a single bubble, see [9,11,13,15–17,19,20,23,29,30]. Most
of those studies focused on two-dimensional or axisymmetric flow.
Because of the large disparity between the length and time scale
for the mass transfer compared to the momentum transfer, fully
resolved three-dimensional calculations of mass transfer are chal-
lenging undertakings and those available in the literature are done

for very low Schmidt number, Sc ¼ Oð1Þ, [8,22]. In order to resolve
the mass transfer at the interface of moving bubbles, and make the
computational requirement of simulation of high Schmidt number
bubbly flows manageable, several authors have presented different
approaches; [3] computed the evolution of a soluble surfactant by
incorporating a singular perturbation analysis of the fluid next to
the interface into a numerical solution of the interface motion for
Stokes flow, [4] used the exact solution of a one-dimensional diffu-
sion problem, fitted to the computational results close to the bub-
ble, to find the mass flux at the surface, and [2,1] solved a mass
boundary layer equation at the interface for the evolution of the
mass concentration next to the bubble and transferred the mass
to the surrounding fluid when the boundary layer grew over a cer-
tain limit. This approach will be discussed further in the rest of
paper.

While much has been done to understand mass transfer from a
single bubble, both analytically and numerically, only a limited
number of studies have looked at the interaction of bubbles and
the effect of void fraction on the mass transfer. [21] studied mass
transfer and reactions in a multi-bubble system and concluded that
for mixing-sensitive reaction networks the interaction of the bub-
bles impacts the reaction selectivity significantly, and [24] per-
formed simulations of single and multiple bubbles in order to
investigate the effect of different Hatta and Schmidt numbers on
the catalytic hydrogenation of nitroarenes. Both of these studies
examined only two-dimensional systems.
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Here, we use the multi-scale method presented in [2] and fur-
ther validated with experimental data in [1] to study the mass
transfer in bubble clusters, including the effect of different void
fractions and Reynolds numbers.

2. Computational method and multiscale model

2.1. Numerical method

For buoyant bubbles the governing non-dimensional numbers
are the Eötvös number, Eo ¼ Dqgd2

b=c, the Morton number,
Mo ¼ gl4

1Dq=q2
l c3, and the ratios of the densities, r ¼ qg=ql, and

the viscosities, m ¼ lg=ll, where q and l are the density and the
viscosity, respectively, c is the interface surface tension, db is the
bubble diameter, and g is the magnitude of gravity. Subscripts g
and l show the respective properties of gas and liquid. For mass
transfer we also need to include the Schmidt number,
Sc ¼ ll=qlD, where D is the mass diffusivity. The Schmidt number
measures how fast mass diffusion takes place compared to viscous
diffusion of momentum. For the liquid side of most gas–liquid
multiphase flows, it is generally very large so mass boundary layers
are thin compared to the viscous boundary layers. We also use two
other non-dimensional parameters for the representation of the
results, the Reynolds number, Re ¼ qlubdb=ll, and the Sherwood
number, Sh ¼ kdb=D, where k is the mass transfer coefficient,
k ¼ ðdm=dtÞ=ðf 0 � f1ÞA ¼ ðdm=dtÞ=f 0nbpd2

b . Here, A is the bubbles
surface area, f 0 is the mass fraction at bubble interface, f1 is the
mass fraction outside the mass boundary layer, dm=dt is the rate
of mass transfer from the bubbles into the domain, and nb is the
number of bubbles. Time is non-dimensionalized with

ffiffiffiffiffiffiffiffi
d=g

p
.

The simulations discussed in this paper are done using a three-
dimensional front-tracking/finite-volume method where the gov-
erning equations are solved on a fixed, regular mesh, covering both
the liquid and the bubbles [28]. The interface is marked by con-
nected marker points that are advected with the fluid velocity. A
marker function, constructed from the location of the interface, is
used to set the density and viscosity of the different fluids. The
marker points are also used to compute the surface tension. This
method has been validated and used extensively for a large num-
ber of simulations of multiphase flows. For applications to bubbly
flows, see [27,5–7,12], for examples. For other implementation of
this approach, see [26,18]. The computational domain is fully
periodic, and we add a force equal to the weight of fluid to prevent
uniform acceleration in the direction of gravity.

The mass transfer is governed by an advection–diffusion
equation for the mass fraction f,

@f
@t
þr � ufð Þ ¼ Dr2f ; ð1Þ

and we take the value of f inside and on the bubble boundary, f 0, to
be given, without loss of generality. We assume that the fluid inside
the bubble is well mixed and retains a uniform concentration
throughout the simulation. For most cases, where the mass diffu-
sion in the gas phase is much higher than in the liquid phase, this
should be a reasonable assumption. Thus, it is only the solution out-
side the bubble that is of interest. As discussed by numerous
authors (see, for example, [31,22]) the solution to the original equa-
tions for the mass concentration in the gas and the liquid is discon-
tinuous at the bubble surface, with the discontinuity given by
Henry’s Law. However, by rescaling the concentration and the diffu-
sion coefficient in the liquid, the solution can be made continuous.
Including the change of volume of bubbles for gases with large sol-
ubility can be important and can be easily added to our method.
However, here we do not include it in order to be able to simulate
a statistically steady state, where the system characteristics does
not change, for a long time.

2.2. Subscale model for mass transfer

In order to implement an analytical description that resolves
the boundary layer, captures its evolution, and allows us to predict
the transfer of mass, we divide the simulated domain into two
regions: inside the boundary layer and outside the boundary layer
(rest of the domain). We use (1) for both region with the addition
of a sink term in the boundary layer equation and a corresponding
source term in the equation for the rest of the domain. These terms
are zero except when the mass boundary layer thickness d,
becomes larger than a boundary layer limit d0, which is a prede-
fined constant that we take to be equal to 2.5 times the grid spac-
ing, h. When the boundary layer gets thicker than d0, we transfer
mass using the source term into the mass-grid field and follow
the mass using the advection diffusion equation on the grid. The
solution is essentially independent of d0 and the effect of changing
d0 from 1� h to 6� h on the mass transfer is less than 1% [2, see].
Overall our approach is similar in spirit to [3] except that we solve
the boundary layer equations using an approximate method result-
ing in a relatively simple (and fast) method. More details about the
implementation of this embedded analytical description can be
found in our previous paper, [1].

Here we assume that the mass concentration outside the bubble
is sufficiently low so that it can be neglected when we compute the
mass diffusion out from the bubble. In general the mass transfer
should depend on the concentration in the surrounding liquid

Nomenclature

d0 boundary layer limit
d boundary layer thickness
c surface tension
Eo Eötvös number, Eo ¼ Dqgd2

b=c
Mo Morton number, Mo ¼ gl4

1Dq=q2
l c

3

Sc Schmidt number, Sc ¼ ll=qlD
Sh Sherwood number, Sh ¼ kdb=D
l viscosity
q density
r strain rate
A bubble surface area
D mass diffusivity
db diameter of the initially spherical bubble
f mass fraction

f 0 mass fraction on the bubble surface
f1 magnitude of f outside boundary layer, f1 ¼ 0
f d0

magnitude of f at d0
g gravity
k mass transfer coefficient
m ratios of the viscosity, m ¼ lg=ll
M0 total amount of f in the boundary layer
n coordinate assigned normal to bubble surface
nb number of bubbles
r ratios of the densities, r ¼ qg=ql

Subscripts
g gas
l liquid
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