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a b s t r a c t

The Boltzmann Transport Equation is employed to model one-dimensional heat conduction problems at
sub-continuum scales. A semi-gray Lattice Boltzmann (LB) model is presented and validated against a dif-
fusive model of steady state thin film heat conduction with temperature boundary conditions. The size-
dependent effective thermal conductivity curves of a gray LB model and a semi-gray LB model for Silicon
are generated. In addition, a new semi-gray LB model with diffusion term is applied to determine the
effective thermal conductivity. The transient features and dimension concerns of the new semi-gray LB
model are also investigated. Results demonstrate that the semi-gray LB model with a diffusion term suc-
cessfully recovers the size-dependent data of effective thermal conductivity and matches well with the
diffusive solution valid at large scales. This approach can be applied to improve the accuracy of thermal
modeling on micro-scale electronic systems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Generation by generation, Silicon-on-Insulator (SOI) transistors
have been scaled to smaller sizes (�200 nm) with higher frequen-
cies to improve the speed and functionality of electronic devices
[1]. It has been discovered that the traditional Fourier heat equa-
tion fails in thermal prediction for nanoscale structures, where
the continuum assumption is invalid. At sub-continuum scales,
the effective thermal conductivity appears much lower than the
bulk value, as the mean free path of the energy carriers becomes
comparable with the characteristic length of the heat transport
domain [2]. In the sub-continuum regime, phonons as the energy
carriers behave ballistically, which leads to a non-equilibrium
energy distribution and localized temperature. The Boltzmann
Transport Equation (BTE) is widely used in the analysis of heat
transport via phonons in the sub-continuum region [1,3]. For most
studies, the wave effect of electrons and phonon frequency depen-
dence are neglected. The Lattice Boltzmann Method (LBM) has
been proven to be an efficient approach to solve the BTE and can
be extended to solve multi-dimensional problems [4–6]. A refined
LBM approach is presented by Pisipati [7], where a diffusive term
is introduced to eliminate the non-equilibrium temperature
discontinuity.

Many experimental works have been performed to help under-
stand the effective thermal conductivity of Si thin films with multi-
ple sizes. Ju [8] measured the in-plane thermal conductivity of
monocrystalline films as thin as 74 nm to derive the mean free
path of thermal phonons at room temperature. Liu [9] provided
the thermal conductivity of self-heated silicon between 300 and
450 K for thicknesses down to 20 nm.

Several approaches based on two BTE models are developed to
simulate thermal transport with sub-continuum sizes: the gray
model and semi-gray model. The gray model considers a single
propagation mode of phonons with linear dispersion relationship,
while the semi-gray model includes one propagating mode and
one reservoir mode [6]. Distinct mean free paths and phonon
velocities are employed in each model to match bulk material
properties. Comparison with experimental measurements shows
that the gray LBM considerably underestimates the size effect on
thermal conductivity. This is due to the fact that the gray approx-
imation neglects phonon dispersion [8]. Mansoor [10] employed
the equation of phonon radioactive transfer (EPRT) model to gov-
ern energy transport in adjacent dielectric thin films, where
solid-angle-averaged energy intensity is applied to describe tem-
perature. A new type of heat conduction equations is derived by
Chen [11] to solve transient heat conduction applicable from nano-
scales to macroscales. In Chen’s study, the heat flux is attributed to
two components: one originates from the ballistic nature of
boundaries, and the other is generated by diffusive transport from
energy carriers. Pisipati [12] introduces an additional diffusive heat
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flux term to refine the LBM, solving multi-layer thin film thermal
transport problems. Studies based on the semi-gray BTE treat the
longitudinal acoustic phonons as the sole moving carrier in ther-
mal transport. The semi-gray BTE assumes instantaneous energy
transport from electrons to phonons, and divides phonons into
two modes: the propagation mode with higher velocities account-
ing for heat transfer, and the reservoir mode with lower velocities
as energy storage [13]. The fraction of each mode is determined by
the respective energy capacity at identical temperatures. Validated
against measurement data, the semi-gray BTE provides more accu-
rate size-dependent thermal conductivities of Si than the gray BTE
[8]. A number of works based on the semi-gray BTE are performed
on the thermal analysis of nanoscale transistors [14–17].

Meanwhile, information about the mean free path and relaxa-
tion time of phonons, which is critical in determining the thermal
conductivity, remains incomplete. Traditionally the mean free path
k in the gray BTE is obtained by kinetic theory [18], k = 3 k/Cv,
which yields the mean free path varying between 31–43 nm for
silicon, based on the bulk thermal conductivity value. In consider-
ation of phonon dispersion, the semi-gray BTE requires a much
longer mean free path (200–300 nm) to recover the bulk thermal
conductivity at room temperature. The specific value can be
derived by an analysis of the semi-gray BTE solution and experi-
ment data [8]. These mean free paths are determined from corre-
sponding models, and are highly dependent of their respective
assumptions. In recent years, several experimental studies
[19,20] presented the phonon mean free path distribution
spectrum of silicon over a wide temperature range. These studies
indicate that phonons with mean free paths larger than the nano-
scale significantly contribute to the thermal conductivity.

In this paper, a semi-gray BTE formulated in terms of lattice
energy density with and without a diffusion term is introduced
to model the one-dimensional heat conduction problem. Both
steady and transient trace of the temperature/energy density dis-
tributions are computed for two types of heat conduction cases:
(i). heat conduction with temperature gap at sides; (ii) identical
boundary temperature with internal heat generation. The size-
dependent effective thermal conductivities for silicon are obtained

by the gray LBM and the semi-gray LBM with/without a diffusion
term, and are compared over multiple scales. In current cases, only
constant temperature boundary condition is discussed. For the
gray LBM and semi-gray LBM without a diffusion term, the emitted
phonon boundary conditions [7] are adopted for each boundary
condition, i.e. specifying the energy density of phonons entering
the domain. Previously in Pisipati’s study [7] the total phonon
energy boundary condition, which specifies the total energy den-
sity, was also presented and failed to demonstrate the size effect.
Therefore it is neglected here. Both the gray and semi-gray LBM
are compared with the Fourier solution for Kn = 0.01, which is
within the diffusive region. Furthermore, a modified semi-gray
LBM is introduced to reduce the governing variables and therefore
the computational effort. Comparison is presented for the original
and simplified semi-gray LBM over various sizes. Modeling results
indicate that the steady state solution is not affected, while the
transient difference depends on the size. A diffusion term is added
to the semi-gray LBM and the steady/unsteady information is
obtained for the two types of heat conduction problems. As the
fraction of each phonon mode is temperature dependent and varies
for different materials, the propagation rate-dependent behavior of
the semi-gray LBM with diffusion is also studied. For the current
study, phonon frequency dependence and interaction among dif-
ferent frequencies are neglected. Particularly with the semi-gray
BTE, assuming the velocity or relaxation time of the reservoir pho-
nons is negligible, thus ignoring the energy transport by reservoir
mode, the propagation phonons are treated as the sole energy
carrier [13]. Instead of the distribution spectrum, constant scalars
are assigned to the mean free path and relaxation time of propaga-
tion phonons, and are derived by the traditional kinetic theory.
Discrepancies occur in the semi-gray LBM model without diffusion.

2. One Dimensional BTE without diffusion

2.1. Gray Lattice Boltzmann Equations

As the quanta of lattice vibration, phonons are the primary
energy carriers in semiconductor devices. The propagation and

Nomenclature

C volumetric heat capacity (J m�3 K�1)
Dp density of states
e phonon energy density (J m�3)
e0 equilibrium phonon energy density (J m�3)
f phonon distribution function
f0 equilibrium phonon distribution function
g phonon generation rate
�h Planck constant divided by 2p (Js)
k thermal conductivity (W m�1 K�1)
kB Boltzmann Constant (JK�1)
Kn Knudsen number
L characteristic length (m)
p polarization
qv,Qv volumetric heat generation rate (W m�3)
t time (s)
T temperature (K)
v phonon velocity (m/s)
x dimensional length

Greek symbols
a thermal diffusivity (m2 s�1)
d fraction of propagation phonon
k phonon mean free path (m)

hD Debye temperature (K)
g number density of phonons
s phonon mean free time (s)
x phonon frequency (Hz)

Subscripts
bulk bulk value
c low temperature side
0BTE for Boltzmann Transport Equation
eff effective
h high temperature side
i direction
P propagation mode
R reservoir mode
ref reference
V volumetric

Superscripts
0 equilibrium
⁄ dimensionless
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