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a b s t r a c t

A generalized analytical solution for the electron and lattice temperature profiles in a metallic film exposed
to an ultrafast laser source is obtained using the superposition and Fourier methods in conjunction with
solution structure theorems. The generalized temperature profile in algebraic form is applicable for the
solution of three thermal models, namely, phonon–electron two-temperature interaction model, electron
kinetic theory model, and the improved electron kinetic theory model. By selecting the appropriate coeffi-
cients as appear in the original governing partial differential equation of a particular model, temperature
profiles for both the electron and lattice can readily be obtained. A comparison of the aforementioned mod-
els in graphical form is made. Results from the phonon–electron two-temperature interaction model agree
well with the improved electron kinetic theory model for electron and lattice temperatures. However, due
to the omission of the time rate change of heat diffusion and laser source, temperature predictions from the
electron kinetic theory model are slightly higher than temperatures from the other two models; particu-
larly, the effect is more profound at the location of the energy incident surface. Otherwise all three models
compare extremely well for the lattice site temperatures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Given the prevalence of ultrafast laser processing in the
manufacturing industry involving fast laser heating of solids, an
ability to model the energy transport process accurately in micro/
nanoscale is important. The heat transfer mechanism and thermal
lagging behavior in metallic materials have been a subject of
theoretical investigation with great interest for the past several
decades. Many studies have focused on nonequilibrium tempera-
tures between electron and lattice in ultrasfast pulsed laser applica-
tions. The energy transport phenomenon within the substructure
for such applications takes finite time to process and therefore it
is given the term ‘‘lagging behavior’’ to describe the mechanism.
Based on quantum theory, the energy state of a metal lattice can
be viewed as quanta or phonons. Thermal energy transport involves
two stages when a metallic surface is subjected to laser radiation
heating. First, photons from the laser warm up the electron gas
while the metal lattice temperature remains unchanged. Through
inelastic phonon–electron scattering and interactions, the incident
radiation energy absorbed by the metal lattice diffuses spatially and
raises the lattice temperature. This phenomenon ranges from a

delay of several seconds to nanoseconds, picoseconds or even
femtoseconds. Therefore the interstructural interaction takes place
at a finite time rather than instantaneous time and such action does
not follow the Fourier theory. A detailed explanation of the process
is available in the textbook by Tzou [1].

Techniques for modeling the heating mechanism in metals first
appeared in the late 1950s and new analytical techniques are still
being developed. Heat transport in metals can be modeled based
on the conventional parabolic one-step Fourier diffusion theory
[2] or by the hyperbolic one-step model [2]. Since the energy
transport mechanism is conduction through electron–phonon
interaction within the microstructure, these two models neglect
the microenergy transfer when the heating process is relatively fast
and consequently, their applicability is invalid. To include these ef-
fects, newer models are developed that are more complex, and can
be categorized as either parabolic or hyperbolic two-step models.

The energy transport phenomenon was first investigated
theoretically by Kaganov et al. [3], followed by Anisimov et al. [4]
with a phonon–electron two-temperature interaction model to de-
scribe both phonon and electron temperatures during the thermal
interaction process. The nonequilibrium temperature difference
between electrons and phonons in this phenomenon was later con-
firmed by Fujimoto et al. [5], Brorson et al. [6], Eesley [7], and Qiu and
Tien [8,9]. In the phonon–electron two-temperature interaction
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model, the thermal behavior of a metal is characterized with two en-
ergy balances between electrons and phonons. These two systems
are coupled via the electron–phonon coupling factor. By taking the
electron kinetic theory approach for the laser short-pulse heating
process, Yilbas [10] advanced the phonon–electron two-tempera-
ture interaction model by developing the electron kinetic theory
model. However, the model neglects the rate of change for diffusion
as well as the energy source. With the inclusion of these two terms,
an improved electron kinetic theory model was later formulated by
Yilbas [11]. The primary focus of this paper will be concentrated on
the solution of the electron and lattice site temperatures based on
the three models mentioned above.

The phonon–electron two-temperature interaction model has
been solved with the Crank–Nicholson scheme with a non-uniform
grid system by Qiu and Tien [8,9]. Results were compared with the
one-step [2] and two-step parabolic [4] and hyperbolic one-step
[12] and two-step [9] theoretical models as well as experimental
data [6] revealing that the parabolic two-step model [4] was able
to predict the general trend of the temperature response but fails
to predict the finite speed propagation phenomenon. This discrep-
ancy was investigated by Tzou et al. [13]. The study divulged that
although a wave term is present in the microscopic parabolic two-
step model governing the metal lattice, the sharp wavefront was
nonexistent as a result of the strong dispersion during the pho-
non–electron interaction process. Nevertheless, it was concluded
that the two-step model is still a valid tool since it provides more
valuable temperature information for the transient process espe-
cially for ultrafast heating applications.

Al-Mimr and Arpaci [14] introduced a simplified approach to
study the thermal behavior of a thin metal film exposed to thermal
pulses of picosecond duration with the parabolic two-step model.
The thermal behavior of the metal film occurs in two separate stages.

Energy transport in both stages is either dominated by the electron
gas energy transmission to the solid lattice through electron–
phonon coupling or by thermal diffusion. During the process, all
other energy transport mechanisms become negligible. With such
an approach, the coupling effect between the energy equation of
both the solid lattice and electron gas is reduced. As a result, the re-
duced partial differential equations become simpler from a mathe-
matical point of view. In a subsequent study, Al-Mimr and Masoud
[15] employed a perturbation technique to decouple the electron
gas and lattice energy as they appear in the two-step model when
the temperature difference between them becomes sufficiently
small. The resulting two uncoupled partial differential equation con-
tain no mixed derivative terms enabling the study of nonequilibrium
temperatures during laser heating of metal films with ease.

It is well known that the conventional Fourier heat conduction
model is not applicable for the study of short-pulse heating of
metals due to the infinite speed assumption associated with the the-
ory. Yilbas [10] initiated an electron kinetic theory approach to im-
prove the temperature solution for short pulse heating applications.
The temperature solution was obtained by using a finite-difference
scheme and the results revealed that the parabolic one-equation
model predicts excessive temperature rise at the surface subjected
to thermal radiation exposure. The same approach was used for
the study of picosecond laser pulse heating of metals [10]. Identical
temperature results were obtained between the two-step
temperature model and the electron kinetic theory approach [16].

Analytical solution for the phonon–electron two-temperature
interaction model has received a great deal of interest in the past.
Yilbas et al. [17] obtained a numerical temperature solution of a
gold film subjected to laser short pulse heating and used that tem-
perature solution as the initial condition to the two-temperature
governing equations of energy transport. The perturbation method

Nomenclature

A constant, Eq. (11)
B constant, Eq. (11)
C constant, Eq. (11)
Ce electron heat capacity, J/m3 K
Cl lattice heat capacity, J/m3 K
Cp specific heat of lattice site, J/kg K
C1. . .C17 coefficients, Eqs. (23) and (24)
D constant, Eq. (11)
f total energy in system, W/m3

fex fraction of excess energy site, J/kg K
F functional form for Sub-problem 1
G electron phonon coupling factor, W/m3 K
Gl energy magnitude factor at the left boundary
Gr energy magnitude factor at the right boundary
g source term, W/m3

gl energy strength at the left boundary, Gl(1 � R)Jol, W/m3

gr energy strength at the right boundary, Gr(1 � R)Jol, W/
m3

Jo laser fluence, W/m2

k thermal conductivity, W/m K
�k extinction coefficient
L film thickness, m
M constant, Eq. (12)
N constant, Eq. (12)
�n refractive index
R surface reflectivity
t time, s
tp energy pulse time, s
T temperature, K
To initial temperature, K

T1 temperature solution due to w function contribution, K
T2 temperature solution due to u function contribution, K
T3 temperature solution due to total energy in system f

function contribution, K
x spatial coordinate, m

Greek symbols
bn eigenvalue, Eq. (19f)
cn eigenvalue, Eq. (20a)
f dummy variable for time
#n eigenvalue, Eq. (19e)
k mean free path of electrons, m
ko wavelength in vacuum, nm
kn eigenvalue, Eq. (19d)
l absorption coefficient, m�1

n dummy variable for space
q density, kg/m3

sp electron mean free time between electron–phonon cou-
pling, s

ss electron–phonon characteristic time, Ce/G, s
u initial condition function, K
w initial rate of temperature change function, K/s
-n constant, Eq. (20b)

Subscripts
e electron
l lattice
n series solution index
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