
A new radiative transfer scattering phase function discretisation
approach with inherent energy conservation

Thomas H. Roos a,⇑, Thomas M. Harms b,1

a CSIR, PO Box 395, Pretoria 0001, South Africa
b Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

a r t i c l e i n f o

Article history:
Received 27 November 2013
Received in revised form 20 January 2014
Accepted 22 January 2014
Available online 19 March 2014

Keywords:
Discrete Ordinates
Phase function
Discretisation
Anisotropic scattering
Packed bed

a b s t r a c t

In the popular Discrete Ordinates Method (DOM) formulation of the Equation of Radiative Transfer (ERT),
the 4p solid angle range of directions is divided into a finite number of discrete directions or ordinates.
This requires that the continuous distribution of the scattering phase function of the medium under
consideration must be discretised to suit the different number, weightings and directions of the SN

ordinate set being used. This must be done such that the sum of scattered energy is conserved relative
to the continuous distribution, and that the asymmetry factor g is similarly conserved. This paper
introduces a discretisation technique with inherent energy conservation, suitable for any quadrature
scheme. The technique was tested on two large sphere scattering phase function distributions of interest
for packed bed radiative heat transfer: the analytic distribution for a diffusely reflecting sphere (a back-
scattering test case) and the distribution for a transparent sphere (n = 1.5) obtained by ray tracing (a test
case with strong forward scatter and some back-scatter). In both cases the resultant discretised phase
function distributions for the S4, S6 and S8 ordinate sets produced errors for the sum of scattered energy
conservation of less than 0.035% and errors for g less than 1.3%. This demonstrates the inherent energy
conservation of the method, as well as visible reductions in g errors. The phase function values for each
case are tabulated in the paper. The major benefit of the method is the fact that computationally costly
matrix calculations are avoided at run-time: the discretisation for a given scattering medium using a
quadrature scheme of given order is performed only once beforehand, and the resultant distributions
can be stored in an input file or look-up table for future computations with different boundary conditions,
different meshes and even different geometries.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Fundamentals of the discrete ordinate method

The solution of the Equation of Radiative Transfer (ERT) is
required whenever a scattering, absorbing and/or emitting
medium is present in a volume of radiative heat transfer interest:

dI
ds
¼ ŝ � rI ¼ jIb � bI þ r

4p

Z
4p

IðŝjÞUð ŝj; ŝÞdXj ð1Þ

where Eq. (1) is valid for grey media (or non-grey media on a
spectral basis) [1]. The final term on the right hand side of Eq. (1)

is the in-scattering term. The scattering phase function Uð ŝj; ŝÞ
represents the probability that a photon travelling in direction ŝj

will be scattered in direction ŝ (the direction represented on the left
hand side by dI=ds ¼ ŝ � rI). An alternative representation of Uð ŝj; ŝÞ
is U(h), where h is the angle between the ŝ direction of the beam
being calculated in Eq. (1) and incoming direction ŝj of radiation
being considered in the in-scatter term. The scattering phase func-
tion distribution U(h) is continuous with angle h, and is axisymmet-
ric about the axis of the incoming beam.

Of the different techniques available for simulating radiative
heat transfer in participating media, the SN or Discrete Ordinates
Method (DOM) is popular and widely used [2]. The development
and applications of the DOM have been extensively described by
many authors, so will not be repeated here. In the DOM, the
continuous 4p solid angle range is divided into a finite number n
of discrete directions or ordinates, so in Eq. (1), numerical quadra-
ture (with quadrature weights wj for each direction ŝj) replaces the
integral over direction in the in-scattering term [3,4]:
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In the standard DOM, this leads to a system of n equations described
(in Cartesian coordinates) by:

s:rIi ¼ ni
@Ii
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þ gi

@Ii
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þ li
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@z
¼ jIb � bIi þ

r
4p
Xn

j¼1

wjUijIj;

i ¼ 1;2; . . . ;n ð3Þ

The modified DOM or MDOM is an augmented version of the
standard DOM described above. It was developed to address the
known ‘‘ray effect’’ limitation of the conventional DOM, by splitting
the intensity I in Eq. (3) into two components [5,6]:

Iðx; y; z; ŝÞ ¼ Idðx; y; z; ŝÞ þ Isðx; y; z; ŝÞ ð4Þ

The direct (or ‘‘ballistic’’ [5]) intensity component Id originates from
sources on the boundary surfaces of the computational volume,
which may be either collimated or diffuse [7]. It is assumed in the
transport equation that there is no in-scattering or emission contri-
bution to the direct intensity component, so Eq. (3) for the direct
component is simplified:

n
@Id

@x
þ g

@Id

@y
þ l

@Id

@z
þ bId ¼ 0 ð5Þ

which therefore allows an analytical solution [6]:

Idðx; y; z; ŝÞ ¼ Iwallðxwall; ywall; zwall; ŝÞe�bsðx;y;z;̂sÞ ð6Þ

where Iwallðxwall; ywall; zwall; ŝÞ is the value of intensity at the wall
(collimated or diffuse) in the direction of interest ðŝÞ. The remaining
term on the right hand side of Eq. (4) is the diffuse component Is,
which originates by scattering and emission from the participating
medium within the computational volume, and (as in the conven-
tional DOM) is solved numerically:
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In the above formulation [5], a mechanism is included to remove
the forward-scattering peak from the in-scattering term so that it
is treated as transmission, to reduce the number of iterations before
convergence due to scattering.

1.2. Scattering phase function discretisation

In order to be used in a DOM or MDOM analysis, the phase func-
tion U(h) must be discretised into discrete scattering values Uij

(where i represents the current ordinate direction being calculated
and j represents the incoming beam).

One concern with the discretisation of the continuous phase
function U(h) into discrete scattering values Uij is that the total
scattered energy fraction (1=4p

R
4p Uðŝj; ŝÞdXj) and asymmetry fac-

tor (g = 1/4p
R

4pU(h)coshdX) might not be conserved after numer-
ical quadrature replaces the integrals, i.e.:
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For isotropic scattering (U = 1), this is not a problem, as the direc-
tions ŝi and weights wi in the SN approximation are chosen to satisfy
conservation for the ‘‘zeroeth’’ moment:
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wj ð10Þ

Nomenclature

DOM discrete ordinates method
ERT Equation of Radiative Transfer
f(�) function of (�)
g asymmetry factor
HG Henyey–Greenstein
I radiative intensity, (W m�2 sr�1)
k current interval number
LA linear-anisotropic
MDOM modified discrete ordinates method
n number of directions ŝi in current SN quadrature set
N order of SN quadrature set
Nintervals number of intervals
Nw k number of different weightings of ordinates in interval

number k
ŝ unit direction vector
wi discrete direction weight for direction ŝi

x, y, z directions in Cartesian coordinate system
xk angle of lower boundary of kth interval

Greek symbols
b extinction coefficient (j + r) (m�1)
g direction cosine with respect to the z-axis

h polar angle between i and j directions
j absorption coefficient (m�1)
l direction cosine with respect to the x-axis
n direction cosine with respect to the y-axis
r scattering coefficient (m�1)
u azimuthal angle
U continuous scattering phase function
Uij discretised scattering phase functioneUij normalised scattering phase function
Ustep step-wise discontinuous axisymmetric scattering phase

function
dX solid angle, sinh dhdu

Subscripts
b blackbody
cells pertaining to grid cells
HG Henyey–Greenstein
i direction of current beam being calculated
j direction of incoming beam being considered in in-scat-

tering term
wall boundary surfaces of the computational volume
x, y, z x, y or z directions
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