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1. Introduction

The review of the current state of mathematical modeling of
frictional heating by means of solutions to one-dimensional ther-
mal problems of friction has been presented in the article [1].
The detailed formulations and exact solutions of such problems
for a three-element tribosystem, consisting of a semi-space, sliding
along a surface of a strip deposited on a semi-infinite foundation,
have been studied in the articles [2-6]. The conditions of perfect
[7] or imperfect [8,9] thermal contact during friction of bodies
were used in the formulation of these problems. Subsequently,
the analytical (in quadratures) solution of the thermal problem of
friction for three-element tribosystem with generalized Barber’s
boundary conditions [10,11] on the sliding surface has been ob-
tained in the article [12]. In the specific case, when the materials
of a strip and a foundation are the same, this solution has been
integrated, and the exact and asymptotic (for small and large val-
ues of the dimensionless time) solutions for the two semi-spaces
have been found.

The objective of this article is to obtain the asymptotic solutions
for a three-element tribosystem. We note that obtaining a suffi-
cient simple formulae to find the temperature of the various tribo-
systems on the basis of asymptotic solutions is important from the
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point of view of engineering applications. Requiring no knowledge,
neither a complex mathematical apparatus of integral transforms
nor numerical integration, the asymptotic solutions allow to
quickly and accurately estimate the temperature state of the fric-
tion couple.

2. Statement of the problem

Consider a system consisting of a top and a lower semi-spaces
(Fig. 1). The top semi-space is homogeneous and the lower is a
piecewise-homogeneous. The last represents a strip of thickness
d placed on a semi-infinite foundation. In initial time moment
t =0 the bodies are compressed by a constant normal pressure pg
acting at infinity parallel to the z-axis of the Cartesian coordinate
system Oxyz. The top semi-space slides with the constant speed
V in the direction of the y-axis on the surface of the strip. Due to
the friction on the contact surface z = 0 the heat generation occurs,
that leads to the heating of the entire system. It is assumed that:

(1) the thermophysical properties of the bodies are independent
of temperature;

(2) the sum of the intensities of heat fluxes on the contact sur-
face z = 0 directed along the normal to this surface into each
the semi-spaces is equal to the specific power of friction
qo = fVpo;

(3) due to the thermal resistance, there is a heat transfer with a
constant coefficient of thermal conductivity of the contact h
through the contact surface of the top semi-space and the
strip;
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Nomenclature

Bi = hd/K; Biot number To = ‘%‘1 temperature scaling factor
d thickness of the strip T =TTy dimensionless temperature
erf(x) Gauss error function t time
erfc(x) =1 — erf(x) complementary error function v sliding speed
ierfc(x)m—1/2 exp(—x?) — x erfc(x) integral of the error function 7 spatial coordinate
erfc(x)
f coefficient of friction Greek svmbols
h coefficient of thermal conductivity of —k 31}2 di ionl . o b
contact T= Sé/ d!mens!onless time (Fourlers number)
K coefficient of heat conduction =z imensionless coordinate
k coefficient of thermal diffusivity .
Po pressure Subscripts oundati
qo = fVpo intensity of the frictional heat flux (the f oundation
power of friction) S strip
T temperature t top semi-space
(4) the temperatures and heat fluxes of the strip and the foun- T, K aTy 0 7
dation are the same on the interface z= — d; oy ra . =5 @)
(5) the wear of the rubbing surfaces is neglected.
_ , T (6, 1) =0, [{] =00, T>0, (8)
Further, all values and parameters concerning the top seml—
ipace strip and foundation will have bottom indexes “t”, “s”, and tsf(c 0)=0, [ < oo, (9)
‘f’, respectively.
On the above-mentioned assumptions, the corresponding heat where
problem of friction for the considered three-element tribosystem
takes the form: _z kt o Koo kg oo hd oo Ty qod
PTCY 10T R A A i Pl by
t ? T f ? T
= , 0 0 1
o Kot £>0,1>0, (M .
3. Exact solution of the problem
O, 1) T,
5(5 )_ sa(i ) , —1<f<0, >0, 2) Applying to the boundary-value heat conduction problem
< (1)-(9) the Laplace integral transform [13]
PTiE,T) 10Tt '
(G0 _1LEY oy 1, 3 Tep) =T o0 = [ Totmerdr t=0. ()
o ke ot
. we find:
—K}‘an(g’T) =7 -Bi[T;(0,7) - T;(0,7)], T>0, (4)
8C =0 T: (C ) A[Sf(g ) (12)
oT; (6. 7) T
s\ T 1 s ok %
=1-vy+Bi|T;(0,7) -T;(0,7)|, T>0, 5 . . .
G o v [Ti(0.1) - T5(0.7)] (3) Ac(L.p) = [(&Bi+vvp)shyp + (Bi+ye/p)chy/ple VP, >0, (13)
T;(-1,71) =T;(-1,71), >0, (6) =[Bi+ (1 —y)ecv/Pl{&rsh[(1+8)yp]+ch[(1+)vp]}, —1<¢<0, (14)
Ar(G,p) = [Bi+ (1 - y)eryple VP, < -1, (15)
_l l l p A(p) = [(1 +&:&)Bi+ &y/PIshy/D+[(& + &)Bi+ & /Plch /P, (16)
0
LLL LA LY
7 T h where
\ K, k, z d «
~ : g (1+9 f
J ! G=—= G=1- s Eef == (17)
. o A /pv/ A - S AEAN R A NN /‘ vk \/k—f kis
dJ Lo Koks / i 1 The inverse of the transform solution (12)-(16), that satisfies the
\ 1
B i boundary conditions (1)-(9), has the form [12]:
i_ K k / 2 (™ Gesf(4,7)
IR : T / 2> 2 p(t,x)dx, 1> 0 18
| ts,f(g ) o A(X) ( ’ ) ’ =Y ( )

T e

Fig. 1. Scheme of the three-element sliding system.

Ge(G,%) = [a(x)Ar(X) + b(X)Ai(x)] cos(£,x)

[
+ [b(X)Ar(X) — aX)Ai(x)]sin(Gx), =0, (19)
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