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a b s t r a c t

An analytical study is made of fully-developed laminar forced convection in a parallel-plate channel
occupied by a nanofluid or by a porous medium saturated by a nanofluid, subject to uniform-flux bound-
ary conditions. A model incorporating the effects of Brownian motion and thermophoresis is adopted.
(Previous analytical studies using this model have been concerned with natural convection.) It is found
that the combined effect of these two agencies is to reduce the Nusselt number.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years a large number of analytical studies of natural
convection in nanofluids (suspensions of particles whose diame-
ters are tens or hundreds nanometres) have been published, either
in a fluid otherwise clear of solid material or in a porous medium,
but the corresponding literature on forced convection is more
sparse. In the case of a porous medium we are aware of just one
published study, namely that by Maghrebi et al. [1], and that study
was a numerical one. These authors investigated thermally devel-
oping forced convection in a parallel-plate channel.

For a fluid clear of solid material there have been several
numerical as well as experimental investigations, and these have
been reviewed by Dalkilic et al. [2]. A recent one is that by Rossi
di Schio et al. [3]. However, as far as we know there has been just
a single analytical published paper, namely that by Hung [4], who
studied flow in microchannels. He considered just the variation of
thermal conductivity, viscosity and heat capacity. On the other
hand, Maghrebi et al. [1] employed the Buongiorno [5] model
which incorporates the effects of Brownian motion and
thermophoresis.

In the present paper we present an analytical study of fully-
developed forced convection, using the Buongiorno model, in a
parallel-plane channel with uniform heat flux on the boundaries.
In the numerical work of Rossi di Schio et al. [3] the Buongiorno

model was used, but these authors assumed streamwise variable
temperature boundary conditions rather than constant flux ones.

2. Analysis

In the analysis that follows we use asterisks to denote variables
that have dimensions. We chose Cartesian coordinates such that
the boundary plates are at z⁄ = ±H, so that H is the channel half-
width. Then for the case of a nanofluid otherwise clear of solid
material (for brevity we will use the phrase ‘‘clear fluid’’), the
velocity v⁄ has components (U, 0, 0), where U is given by

U ¼ 3
2

Umð1� z2Þ; ð1Þ

where Um is the mean velocity. This is the well-known expression
for plane-Poiseuille flow. For the case of a Darcy porous medium,
we have slug flow, and

U ¼ Um: ð2Þ

We denote the temperature by T⁄ and the volumetric nanoparticle
fraction by /⁄. At the boundaries we suppose that the heat flux into
the porous medium or clear nanofluid is q00, a constant quantity.
Since the flow is thermally developed, the first law of thermody-
namics requires that

@T�

@x�
¼ q00

ðqcÞf HUm
: ð3Þ

Here (qc)f is the heat capacity of the nanofluid. The thermal energy
and nanoparticle conservation equations are taken to be
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ðqcÞN
@T�

@t�
þ ðqcÞf v� � r�T�

¼ kmr�
2
T� þ eðqcÞp DBr�/� � r�T� þ

DT

T0

� �
r�T� � r�T�

� �
; ð4Þ

@/�

@t�
þ 1

e
v� � r�T� ¼ DBr�

2
/� þ DT

T0

� �
r�2

T�: ð5Þ

Here t⁄ is the time, (qc)N is the heat capacity of the porous medium or
clear nanofluid, km is the thermal conductivity of the porous medium,
e is the porosity of the porous medium (set as unity for a clear fluid),
ðqcÞp is the heat capacity of the nanoparticles, DB and DT are the
Brownian motion and thermophoresis coefficients, respectively,
and T0 is a representative temperature which we can choose, in the
absence of any better alternative, to be the wall temperature, even
though in the case of uniform flux boundary conditions this varies
with the axial coordinate. We are following the classical treatment
of forced convection given in textbooks such as Bejan [6].

We introduce dimensionless variables as follows. We define

ðx; y; zÞ ¼ ðx�; y�; z�Þ=H;

t ¼ t�am=rH2; ðu; m;wÞ ¼ ðu�; m�;w�ÞH=am;

/ ¼ ð/� � /�0Þ=/
�
0; T ¼ ðT� � T0Þkm=Hq00; ð6Þ

where /�0 is a reference scale for the nanopartical fraction and

aN ¼
kN

ðqcPÞf
; r ¼ ðqcPÞN

ðqcPÞf
: ð7Þ

We also introduce the dimensionless parameters Le, NA and NB de-
fined by

Le ¼ aN

DB
; NA ¼

DT

DBT0
; NB ¼

eðqcÞp/
�
0

ðqcÞf
: ð8Þ

Then Eqs. (4) and (5) become

@T
@t
þ v � rT ¼ r2T þ NB

Le
r/ � rT þ NANB

Le
rT � rT; ð9Þ

1
r
@/
@t
þ 1

e
v � r/ ¼ 1

Le
r2/þ NA

Le
r2T: ð10Þ

The parameter Le is a Lewis number, NA is a modified nanofluid dif-
fusivity ratio and NB is a modified nanofluid heat capacity ratio.

Eq. (3) becomes

@T
@x
¼ 1

Pe
; ð11Þ

where Pe is a Péclet number defined by

Pe ¼ HUm

aN
: ð12Þ

In this notation,

u ¼ Pef ðzÞ; ð13Þ

where

f ðzÞ ¼
1 for a porous medium;
3
2 ð1� z2Þ for a clear fluid:

(
ð14Þ

Now Eqs. (9) and (10) become, for a steady-state situation,

r2T þ NB

Le
r/ � rT þ NANB

Le
rT � rT ¼ f ðzÞ; ð15Þ

r2/þ NA

Le
r2T � LePef ðzÞ @/

@x
¼ 0: ð16Þ

We need to solve Eqs. (15) and (16) subject to the symmetry
conditions

@T
@z
¼ 0;

@/
@z
¼ 0 at z ¼ 0; ð17a;bÞ

and the boundary conditions

T ¼ x
Pe
;

@/
@z
þ NA

@T
@z
¼ 0 at z ¼ 1: ð18a;bÞ

Nomenclature

c nanofluid specific heat at constant pressure
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
H half channel width
km thermal conductivity of the porous medium
kN effective thermal conductivity of the nanofluid or por-

ous medium
Le Lewis number, defined in Eq. (8)
NA modified diffusivity ratio, defined in Eq. (8)
NB modified heat capacity ratio, defined in Eq. (8)
Pe Péclet number, defined in Eq. (12)
q00 wall heat flux
t⁄ time
t dimensionless time, t⁄am/rH2

T⁄ nanofluid temperature
T dimensionless temperature
T0 representative temperature, chosen to be the wall tem-

perature
(u, m, w) dimensionless Darcy velocity components, (u⁄, v⁄, w⁄)H/

am

Um mean flow velocity
v fluid velocity
v⁄ dimensional fluid velocity, (u⁄, m⁄, w⁄)
(x, y, z) dimensionless Cartesian coordinates, defined in Eq. (6)

(x⁄, y⁄, z⁄) Cartesian coordinates

Greek symbols
aN thermal diffusivity of the nanofluid, kN

ðqcPÞf
e porosity of the porous medium (set as unity for a clear

fluid)
l viscosity of the fluid
q fluid density
(qc)f heat capacity of the nanofluid
(qc)N effective heat capacity of the nanofluid or porous med-

ium
(qc)p heat capacity of the nanoparticles
qp nanoparticle mass density
r heat capacity ratio, defined in Eq. (7)
/⁄ nanoparticle volume fraction
/�0 reference value for the nanoparticle volume fraction
/ relative nanoparticle volume fraction, /��/�0

/�0
U function giving z-dependence of /
h dimensionless temperature
H function giving z-dependence of h

Superscript
⁄ dimensional variable
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