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a b s t r a c t

The instability of the liquid–vapour front in a geothermal system with a cooling flux at the liquid bound-
ary is investigated by introducing a small perturbation at the front. The mechanisms contributing to the
stability and instability of such systems are analysed using a separate-phase model with a sharp interface
between liquid and vapour. The governing equations representing incompressibility, Darcy’s law and
energy conservation for each phase are linearised about suitable base state and the stability of this state
is investigated. A conditional expression for the critical modified Rayleigh number depending on the dif-
ferent physical parameters has been found. It has been shown that advection is not essential for instabil-
ity, but it encourages the unstable behaviour.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The interest in the investigation of liquid–vapour phase change
problems arises from their wide range of applications, such as dry-
ing processes [1,2, pp. 397–409], geothermal systems [3–8], heat
pipes [9], film boiling [10–12] and nuclear safety analysis [13].
The additional heat which is absorbed or released in these pro-
cesses during the transformation of one phase to another phase
is known as the latent heat of evaporation or condensation.

The transitions to instability at fluid–fluid interfaces are of great
interest on account of their above mentioned applications. These
instabilities can often occur at a phase change interface between
liquid and vapour. In particular, we are interested in instabilities
related to the Rayleigh–Taylor instability when they occur in por-
ous media. The basic state in such configurations becomes unstable
when the buoyancy forces overcome the stabilising effect of viscos-
ity and diffusion. It happens for a critical value of the Rayleigh
number, which is considered to be the key controlling parameter.

In the present study the instability of the liquid–vapour front in
a porous medium with a cooling flux at the liquid boundary, is con-
sidered. The controlling dimensionless parameters of the flow and
the heat transport are the modified Rayleigh number ðR3Þ and the
cooling flux at the liquid boundary ðQliqÞ, respectively. The base
temperature and velocity profiles with j R3 j¼ 5, the density ratio
R1 ¼ 0:0006, the conductivity ratio j ¼ 4; Q liq ¼ 1:2; 2; 4, and the
scaled length of the porous layer x� ¼ 1, are presented in

Fig. 1. The stability of this base state is in question. It is important
to note that Figure 1(b) does not shows the absolute pressure, but
simply the difference between the absolute pressure at a given
point and the pressure on the (upper) boundary.

In a geothermal context, despite of the strong buoyancy con-
trast between the liquid and vapour phases, the natural (basic)
state is often found to be stable [14,15]. Straus & Schubert [16] car-
ried out a linear stability analysis of the phase change front. In the
basic (unperturbed) state, the fluid phases were considered to be
static with the assumption that there is no net mass flux across
the phase change interface; they showed that the phase change
interface is gravitationally unstable for medium wavelength. Fur-
thermore, if net mass flux is allowed through the interface then
the stability of the system is permeability dependent. Later, Straus
& Schubert [17] illustrated that a vapour dominated system can de-
velop, if the phase change interface exists in a low permeability
layer. Eastwood & Spanos [18] showed that if the phase change
interface is sharp and there is a zero net mass flux across the inter-
face then the system is unstable for long wavelength. In the case,
when phase transition (net mass flux is allowed) is permitted then
neutral stability can be predicted for a critical wave number.

Tsypkin & Il’ichev [19,20] categorized three different cases of
transition to instability of the stationary vertical phase change flow
under the condition that conduction dominates over advection. It
was shown that if the interface is equidistant from the liquid and
vapour boundaries then there is a spontaneous transition to
instability (all wave numbers become unstable at the same value
of the controlling parameter). The remaining two cases were: that
the transition to instability occurs first at zero wave number if the
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interface is near to the vapour boundary, whereas instability oc-
curs first at infinite wave numbers if the interface is near to the li-
quid boundary. Il’ichev & Tsypkin [7] concluded that the most
unstable mode of transition happens for zero wave number, when
a water phase overlies an air-vapour mixture phase. Later on, Il’i-
chev & Tsypkin [21] studied the stability of water over steam with
an advective-conductive basic state and showed that for an arbi-
trary value of the permeability a vapour dominated phase may ex-

ist and be stable. Most recently, Khan & Pritchard [14] carried out
linear stability analysis of liquid–vapour fronts in porous media
with various combinations of thermal boundary conditions. They
showed that the liquid–vapour interface has multiple positions
and reaffirmed that despite of heavier fluid above lighter fluid con-
figuration, the basic state could be still stable. The main difference
with the current study is that now we consider the simplest possi-
ble base state (no through flow) and explore the possibility for the
better understanding of the medium-wave instabilities while
focusing on advection with in the perturbed state. Despite the fact
that the base state has no through flow but still the present model
inherit all the physical parameters from the previous study.

In Section 2 we will present the mathematical model we em-
ploy. We will then (Section 3) consider a linear stability analysis
of the steady state. The possible types of transition to instability,
namely, transitions due to long- and short-wave perturbations
are discussed (Section 4). In Section 5 we will present the compar-
ison of the different modes of heat transport in the perturbed state.
Finally, in Section 6 we will consider the physical interpretation
and significance of our results.

2. Mathematical model

We consider a porous layer of infinite extension bounded by
two horizontal, much more permeable layers. The porous medium
is considered to be uniform, isotropic and fully saturated with
fluid. The upper and lower highly permeable layers are filled either
with vapour and liquid, respectively or liquid and vapour, respec-
tively (see Fig. 2). In the low-permeability layer there exists a
phase change front which separates the liquid phase from the
vapour phase. The liquid side is kept cool by imposing a cooling
flux, whereas the vapour side is hot. The highly permeable layers
will allow us to impose constant pressures at both sides of the
low-permeability layer.

Nomenclature

Latin
_m mass flux

cp specific heat
g acceleration due to gravity
H reciprocal of Stefan number
K permeability
k thermal conductivity
L thickness of the low permeable layer
l wave number
P pressure
q heat flux per unit area
S location parameter of the interface
T temperature
t time
x vertical coordinate
y horizontal coordinate

Greek symbols
� perturbation parameter
j thermal conductivities ratio
k latent heat
l dynamic viscosity
m kinematic viscosity
q density
r spectral parameter
r� asymptotic spectral parameter
H dimensionless temperature
t fluid flow velocity

u porosity

Dimensionless quantities
C specific heat ratio
E heat capacity ratio
R kinematic viscosity ratio
R1 density ratio
R2 dynamic viscosity ratio
R3 modified Rayleigh number

Subscripts
L liquid boundary
liq liquid phase
m porous medium
ref reference quantity
S at the phase transition front
s porous skeleton
V vapour boundary
vap vapour phase
0 base state
1 perturbed state

Superscripts
min minimum
⁄ dimensionless quantity
0 base state
1 perturbed state
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Fig. 1. Base temperature and velocity profiles, where LP and VP stands for the liquid
and the vapour phase, respectively.
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