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a b s t r a c t

Data from direct numerical simulations (DNS) of fully-developed turbulent channel flows subjected to a
constant surface heat-flux are used to explore the scaling behaviours admitted by the mean thermal
energy equation. Following the framework of Wei et al. (2005) [1,2], the analysis employs a theory based
on the magnitude ordering of terms in the mean thermal energy equation of wall-bounded turbulent heat
transfer. A four layer thermal structure has been identified from the leading order terms in the mean
energy equation. A review of the limitations of traditional and existing scaling of mean temperature
and turbulent heat flux is conducted. The possibilities of a new scaling approach with the introduction
of generalized thermal length scale are discussed within the context of the four-layer framework. This
methodology generally seeks to determine the invariant form(s) admitted by the relevant equation.
Investigation of normalized statistical quantities applicable to inner, outer and intermediate regions of
the flow, whose properties are dependent on a small parameter that is a function of either Reynolds
number or both Reynolds and Prandtl numbers, shows inconsistencies between the normalizations on
the different subdomains. Although the present scaling approach successfully explores the generalized
properties of intermediate layer, issues pertaining to simultaneously and self-consistently reconciling
the inner and intermediate normalizations remain unresolved.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wall-bounded turbulent flows are present in numerous indus-
trial, technological, aerospace and naval applications that involve
heat and mass transport. The knowledge of the mean temperature
profile is generally essential, and a number of approaches have
been attempted to predict the variation of this scalar field over
the flow domain. Based on the Reynolds analogy between momen-
tum and scalar transport, many researchers have employed
approaches that effectively assume ‘the law of wall’ [3–5]. This
approach supposes that the mean temperature and turbulent heat
flux profiles become invariant when the viscous or inner scaled
distance from the wall is employed. Conveniently, one may then
apply this form of the ‘Reynolds analogy’ to relate the eddy
viscosity to the eddy thermal diffusivity. A brief review of the
many variations of this approach are listed by Dhotre and Joshi
[6]. Such approaches also naturally embrace the use of higher order

closures for the Reynolds averaged momentum and heat balance
equations. Although these kinds of models are fast and amenable
to use at very high Reynolds and Prandtl numbers, the correct
estimation of mean quantities critically depends on the accurate
determination of the appropriate normalizations and the length,
velocity and temperature scales they employ. Earlier investigations
showed that the normalized mean temperature only exhibits slight
variations due to the Reynolds number [7,8]. Temperature profiles,
however, are seen to change much more rapidly with varying Pra-
ndtl number, both in turbulent channel [7] and pipe [9] flow. To
date, the combined effects of Reynolds and Prandtl numbers have
not been systematically investigated in the context of the underly-
ing transport equation. It is important, however, to understand
how the thermal transport equation can be cast into invariant
forms that properly reflect the dominant physical mechanism, as
this reveals the effects of the governing parameters on the thermal
field statistics.

Traditional representations of temperature and turbulent heat
flux profiles generally employ either inner or outer normalizations.
These normalizations, however, fail to provide invariant profiles as
the relevant non-dimensional parameters are varied [7–25].
Moreover, neither of these normalization are successful in
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the vicinity of the peak turbulent heat flux profiles. Inner
normalization of the mean temperature uses the so-called friction
temperature, and the wall distance is normalized by the friction
velocity and the kinematic viscosity. This normalization, however,
is traditionally relevant over a small region adjacent to the wall,
the conductive sublayer [4], whose width varies as a function of
Prandtl number. Furthermore, the data from the logarithmic layer
for temperature exhibit different mean temperature profiles as a
function of both Reynolds and Prandtl numbers. This range of phe-
nomena is richer than exhibited by the momentum field. It arises
from the additional parameter, Prandtl number.

In order to understand the underlying physics of heat transfer in
turbulent flows for moderate to high Reynolds and Prandtl num-
bers, dimensional and similarity analysis play central roles. In this
regard, the literature is extensive, and thus here we only discuss a
subset of recent findings. Wang et al. [5] introduced the tempera-
ture scaling for forced convection turbulent boundary layers using
a variant of the similarity theory by George and Castillo [26]. A
power law was found for the temperature profile in an intermedi-
ate region, and this melds into a composite profile in the wake and
near-wall regions. Apart from dimensional analysis or similarity
analysis, Churchill and Chan [27] and Churchill et al. [28] intro-
duced a new approach by proposing an algebraic model to predict
the mean temperature profile from a knowledge of the velocity
profile and the turbulent Prandtl number. Using the model of Chur-
chill and Chan [27] and Churchill et al. [28], Le and Papavassiliou
[29] developed a temperature profile for low Reynolds number tur-
bulent flow. But they pointed out the limitation of the theoretical
predictions by Churchill and co-workers at very high Prandtl num-
bers. Marati et al. [30] derived the symmetry invariant mean pro-
files for a passive scalar in wall-bounded turbulent flow based on
the symmetry properties of the Navier–Stokes equation and the
energy equation. Their results showed the validation of the well-
known logarithmic laws as well as interpreted linear, algebraic
and exponential profiles in different physical regimes.

Building upon his initial studies indicating the existence of an
intermediate layer (mesolayer), Afzal [31] employed a different ap-
proach to investigate the properties of the mean momentum and
thermal balance in fully developed turbulent channel flow having
both smooth and transitionally rough surfaces. Seena and Afzal
[32] proposed a power law temperature distribution for a fully
developed turbulent channel flow for large Peclet numbers (prod-
uct of Reynolds and Prandtl numbers). They supposed that both the
mean turbulent flow and thermal fields were divided into inner
and outer layers. The matching of the velocity profile by the Isak-
son–Millikan–Kolmogorov hypothesis [33–35] led to a power law
velocity profile [36,37], in addition to the traditional log laws. Sim-
ilar analyses were used to deduce a power law temperature profile
[32], which was proposed to be equivalent to the log-law temper-
ature profile for large Peclet numbers. Seena and Afzal [38] also
studied the scaling properties of the intermediate layer in a fully
developed turbulent channel flow by employing the method of
matched asymptotic expansions. They proposed a half-defect
velocity law and a half temperature defect law in association with
the intermediate layer. Their prediction of Reynolds shear stress
and Reynolds heat flux profiles in the intermediate layer show
good agreement with available experimental and DNS data. More-
over, by assuming the existence of overlap layers Seena et al. [39]
constructed a closure model that leads to a series of logarithmic
functions of the mesolayer variable for Reynolds shear stress and
Reynolds heat flux profiles.

Herein we take a different approach to study the scaling
properties admitted by the mean thermal energy equation. This
framework only relies on the magnitude ordering of the terms in
the mean energy equation, and thus does not invoke additional
assumptions or resort to the use of a closure model. Recent

analyses of turbulent wall bounded flow for both pipe and channel
[1,40–43] indicate that many of the statistical properties of these
flows are similar, even though they possess different geometric
configurations. Notably, analyses of the mean momentum equa-
tion can be directly employed to explore the underlying physics
and scaling of the dependent variables in that equation. Wei
et al. [1] introduced a generic first-principles framework to charac-
terize the four layer regime in wall bounded flows, an extension of
which leads to a mesoscaling of Reynolds shear stress [43] and
mean velocity field [44] in turbulent channel flows. The limiting
value of Reynolds number at which the four layer magnitude
orderings are first established has been investigated for channel
flows by Elsnab et al. [45]. However, the onset of four-layer regime
for thermal field is not yet well characterized, as it is a function of
both Reynolds and Prandtl numbers. In fact, as shown herein, a
number of conditions depending on the magnitude of Reynolds
and Prandtl numbers factor into determining the onset of the
four-layer thermal structure.

An important observation obtained from the mean momentum
balance theory [46,47] is the existence of a hierarchy of scaling lay-
ers with each having an analytically well-defined characteristic
length. The conditions for logarithmic dependence of the mean
velocity profile were explored by using this approach [48,49].
The analogous method was subsequently applied to channel flow
heat transfer by Wei et al. [2]. This effort revealed a qualitative
characterization of the four layer regions, Peclet number depen-
dence of the scaling of temperature, and the conditions associated
with the existence of the logarithmic mean temperature profile.
However, a more comprehensive elucidation of the scaling behav-
iours of the mean energy equation is still lacking, and this moti-
vates the present effort.

Multiscale analyses are used herein to clarify the scaling prop-
erties admitted by the mean energy equation. In order to describe
mean flow structure properly, a length scale intermediate to the
traditional inner and outer scales is necessary. According to the
present theory, the transition from inner to outer scaling physically
takes place owing to a balance breaking and exchange of the lead-
ing order heat transport mechanisms as a function of scale. This
underlies the existence of an intermediate region between inner
and outer layers (thermal mesolayer) where, in the mean, all terms
in the energy equation are of equal order [2]. In order to gain a bet-
ter understanding of the possibilities for generating invariant pro-
files of the mean temperature and turbulent heat flux, the current
investigation exploits the properties of four distinct balance layers
in a magnitude ordering and scaling analysis of the mean energy
equation. The analyses primarily employ existing DNS data sets
of Kawamura and co-workers [17,20,50].

2. Mean momentum layer structure

To provide a context for the heat transfer problem, it is useful to
briefly review the four layer structure associated with the mean
momentum balance. The relative magnitude of the terms in the
Reynolds-averaged Navier–Stokes equations are used to define
the layer properties. This fundamentally differs from the tradi-
tional four layer structure for turbulent channel flows [51–53];
namely the viscous sublayer (yþ ¼ yus=m < 5, where y is the wall-
normal distance, m is the kinematic viscosity and us is the friction
velocity), the buffer layer (5 6 yþ 6 30), the inertial (or classical
logarithmic layer, 30 6 yþK 0:15Res, where Res is the Kármán
number, Res ¼ usd=m) and the outer boundary layer or wake layer
(0:15 6 y=dK 1:0). It also fundamentally differs from the structure
proposed by Wosnik et al. [54]. They divided the flow into the main
‘viscous sublayer’, ‘overlap’ and ‘outer’ regions. The near-wall
region, where 0 < yþ < 30, was composed of the linear viscous
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