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a b s t r a c t

The thin film flow over a porous stretching sheet has been studied in presence of suction/injection under
the assumption of uniform initial film thickness. It is also considered that the sheet is either heating or
cooling along the direction of stretching. The rate of film thinning decreases with increasing the thermo-
capillary parameter when the sheet is heated and the opposite phenomena is observed for the sheet is
cooled. The film thickness decreases with the increasing values of porosity parameter and suction veloc-
ity whereas it decreases with the increasing injection velocity. The temperature at a fixed height of the
film decreases with the increasing values of porosity parameter and injection velocity, but it increases
with increasing suction velocity when the sheet is heating. The opposite behaviour is observed when
the sheet is cooling.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The flow and heat transfer of a thin viscous liquid film over a
stretching sheet is important for understanding and designing of
various heat exchangers and chemical processing equipment, reac-
tor fluidization etc. In a melt-spinning process, the extrudate from
the die is generally drawn and simultaneously stretched into a fil-
ament or sheet, which is then solidified through rapid quenching
or gradual cooling by direct contact with water or chilled metal
rolls. In fact, stretching imparts a unidirectional orientation to
the extrudate, thereby improving its mechanical properties as the
quality of the final product greatly depends on the rate of cooling.
Crane [1] first studied a steady two-dimensional boundary layer
flow caused by the stretching of a sheet that moves in its own
plane with a velocity which varies linearly with the distance from
a fixed point on the sheet and gave an exact similarity solution.
Due to the practical applications of the stretching sheet flow prob-
lem, the work of Crane [1] was subsequently extended by many
researchers either by considering the effects of rotation, heat and
mass transfer, chemical reaction, MHD, non-Newtonian fluid or
different possible combinations of these above effects (see [2–8]).

The study of hydrodynamic flow and heat transfer over a porous
stretching sheet has received adequate attention due to its vast
applications such as, geothermal extraction, storage of radioactive
nuclear waste materials, cooling of electronic components, food

processing, casting and welding of manufacturing processes etc.
Cheng and Minkowycz [9] and Cheng [10] studied the problem of
free convection about a vertical impermeable flat plate in a satu-
rated porous medium. The boundary layer flow of viscous liquid
through the porous stretching sheet are investigated by Abel and
Veena [11], Elbasbeshy and Bazid [12], Ali and Mehmood [13],
and Abel et al. [14]. Where as, the effects of suction or injection
on the boundary layer flows due to a stretching of the wall has
been analyzed by Erickson et al. [15], Gupta and Gupta [16], Chen
and Char [17], Elbasbeshy and Bazid [12].

Needless to say that in all these studies, boundary layer equation
is considered and the boundary conditions are prescribed at the
sheet and on the fluid outside the boundary layer at infinity. Imposi-
tion of similarity transformation reduces the system to a set of ODEs,
which are then solved either analytically or numerically. Wang [18]
first studied the flow of a thin liquid film over a unsteady stretching
sheet. In this study, he used a special type of similarity transforma-
tion to reduce the boundary-layer equations into a set of nonlinear
ODE and then solved numerically. Using this special type of similar-
ity transformation, Andersson et al. [19,20] and Chen [23] extended
the study of unsteady stretching sheet flow of a liquid film to the case
of power law fluid, heat transfer. Liu and Andersson [21] extended
the problem considered by Andersson et al. [20] in the case of more
general form of the prescribed surface temperature variation.
Dandapat et al. [22] studied the effects of thermocapillarity on the
flow of thin liquid film over an unsteady stretching sheet. Wang
[24] presented exact analytical solutions for the momentum and
heat transfer within an unsteady thin liquid film over a stretching
sheet. Nandeppanavar et al. [25] studied the combine effects of vis-
cous dissipation, non-uniform heat source/sink, magnetic field and
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thermal radiation on the flow and heat transfer of a thin liquid film
over an unsteady stretching surface.

It is to be mentioned here that the study of unsteady flow due to
the stretching of a sheet has not yet received adequate attention
when the liquid film either lies or coincide with the fluid boundary
layer thickness. If the thickness of the liquid film either coincides
or lies within the boundary layer thickness then one needs to con-
sider the full set of Navier–Stokes equations to study such flow prob-
lem. Recently Dandapat et al. [26] and Dandapat and Maity [27] have
studied the development of thin liquid film over an unsteady
stretching sheet by considering the full set of Navier–Stokes equa-
tions with non-planer film surface and able to show that the final
film thickness neither depends on the type of initial distribution of
the liquid nor the initial amount of liquid deposited over the stretch-
ing sheet. Depending on the finding of Dandapat and Maity [27],
Dandapat et al. [28] have studied the unsteady film development
over a stretching sheet under the assumption of uniform initial film
thickness.

To the best of our knowledge, the study of thin liquid film devel-
opment over a porous stretching sheet by considering full Navier–
Stokes equations has been not reported yet. In this article, we are
interested to study the flow and heat transfer of a thin liquid film
over an unsteady porous stretching sheet in presence of suction
or injection by considering full set of momentum equations. We as-
sumed that the initially deposited liquid film over the stretching
sheet is planer and remain planer throughout entire process of
stretching as well as film thinning. It is also assume that the sheet
is either heating or cooling along the direction of stretching.

2. Mathematical formulation

Consider the unsteady flow of a thin liquid film of uniform
thickness h0 over a porous stretching sheet as shown in Fig. 1.
The x-axis is chosen along the plane of the sheet and z-axis is taken
normal to the plane. The surface z ¼ 0 starts stretching impulsively
from the rest with the velocity ax; a being constant with dimension
of ½time��1. The stretching sheet is either heating or cooling along
the x-direction. The porous medium is assumed to be constant per-
meability k0ð> 0Þ and the porosity /ð0 < / < 1Þ, the effects of pores
on the velocity field obey the Darcy’s law rp ¼ � m/

k0
V is given by

Neild and Beijan [29]. Let V ¼ ðu;wÞ and T are the velocity vector
and temperature of the liquid, respectively. The governing set of
equations are

r � V ¼ 0; ð1Þ

Vt þ ðV � rÞV ¼ �rp=qþ mr2V � m/

k0
V; ð2Þ

qCp½Tt þ ðV � rÞT� ¼ kr2T; ð3Þ

where q; m; Cp and k are the density, kinematic viscosity, heat capac-
ity at constant pressure and thermal conductivity of the liquid,
respectively.

The corresponding boundary conditions are as follows.
On the plane of the sheet at z ¼ 0,

u ¼ ax; w ¼ �Ws; T ¼ T0 � k
x2

2
T1; ð4Þ

where T0 and T1 are positive constants and the velocity Ws is taken
to be positive or negative for the suction or injection at the porous
stretching wall. Here, the term heating or cooling is used to refer the
situation of increasing or decreasing of the temperature along the
direction of stretching respectively. The negative or positive values
of k represent the cases of heating or cooling along the stretching
direction, respectively.

At the free surface z ¼ hðtÞ,

pa � pþ 2l @w
@z
¼ 0; ð5Þ

l @u
@z
þ @w
@x

� �
¼ @r
@T

@T
@x
; ð6Þ

@T
@z
¼ 0; ð7Þ

dh
dt
¼ w; ð8Þ

where pa and l are the atmospheric pressure and dynamic viscosity
of the liquid, respectively. Eqs. (5) and (6) denote respectively, the
vanishing of the normal stress at the interface and shear stress is
balanced by the thermal stress at the free surface. Eq. (7) represents
that the heat flux at the free surface to be vanish, i.e., the free sur-
face to be adiabatic. r is the surface tension which varies linearly
with the temperature as r ¼ r0½1� cðT � T0Þ� (see [22,30]). For
the most of the liquids, surface tension decreases with temperature,
i.e., c is a positive constant. Eq. (8) represents the kinematic condi-
tion at the free surface.

The initial conditions at time t ¼ 0 are

u ¼ 0; w ¼ 0; hð0Þ ¼ h0; T ¼ T0: ð9Þ

Now we introduce the following similarity variables (see [30–32])

uðx; z; tÞ ¼ xFðz; tÞ; wðx; z; tÞ ¼Wðz; tÞ; ð10Þ

pðx; z; tÞ ¼ � x2

2
Aðz; tÞ þ Bðz; tÞ; ð11Þ

Tðx; z; tÞ ¼ T0 � k
x2

2
Mðz; tÞ � kNðz; tÞ; ð12Þ

where functions Mðz; tÞ and Nðz; tÞ appearing in 12 are clearly com-
patible with the temperature boundary condition given by (4). It is
assumed that Eq. (12) holds for large but finite value of x so that T
can never tend to1 or �1. Substituting (10)–(12) into the system
of Eqs. (1)–(3) and equating the like order terms of x from both
sides, we have

F þ @W
@z
¼ 0; ð13Þ

@F
@t
þ F2 þW

@F
@z
¼ A

q
þ m

@2F
@z2 �

m/

k0
F; ð14Þ

@W
@t
þW

@W
@z
¼ � 1

q
@B
@z
þ m

@2W
@z2 �

m/

k0
W; ð15Þ

@A
@z
¼ 0; ð16Þ

qCp
@M
@t
þ 2FM þW

@M
@z

� �
¼ k

@2M
@z2 ; ð17Þ

qCp
@N
@t
þW

@N
@z

� �
¼ k M þ @

2N
@z2

" #
: ð18Þ

Fig. 1. Schematic diagram.
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