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a b s t r a c t

A coupled lattice Boltzmann and finite volume method is proposed to solve natural convection in a dif-
ferentially heated squared enclosure. The computational domain is divided into two subdomains and a
message passing zone is between them. The velocity and temperature fields are respectively solved using
D2Q9 and D2Q5 models in lattice Boltzmann method (LBM) while SIMPLE algorithm is applied to the
finite volume method (FVM). The velocity and temperature information transfers are fulfilled by a non-
equilibrium extrapolation scheme. Pure FVM, pure LBM, and the coupled method with two different geo-
metric settings are applied to solve the natural convection with different Rayleigh numbers. The results
obtained from the coupled method agreed with those from pure FVM and LBM very well.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The fluid flow and heat transfer problems encountered in engi-
neering applications span into different scales and there are differ-
ent numerical methods for different scales. Molecular dynamics
(MD) [1] can be applied to solve nano- and microscale problems
while lattice Boltzmann method (LBM) is a typical mesoscopic
scale method [2]. Finite volume method (FVM), on the other hand,
is suitable for solving the macroscale problems [3]. The growing
multiscale problems must be solved with multiscale method since
there is no method that is suitable for all the scales. There exist re-
search works about the multiscale methods in the literature, e.g.,
MD-LBM [4–6], MD-FVM [7–9] and LBM-FVM [10–12].

There are several models for the fluid flow and heat transfer
problems in LBM. He et al. proposed the internal energy function
by relating internal energy with the kinetic energy of particle for
the incompressible fluid flow and heat transfer [13]. Then its simpli-
fied thermal LBM model was advanced by Peng et al. [14] while Guo
et al. introduced a coupled lattice BGK model based on Boussinesq
assumption [15]. The D2Q9 and D2Q5 models were respectively
used to solve the velocity and temperature fields [16]. Meanwhile,
Semi-implicit Method for Pressure Linked Equation (SIMPLE) [17]
is one of the most frequently used algorithms in FVM. The D2Q9
and D2Q5 model were respectively used to solve the velocity and
temperature fields [16]. Meanwhile, Semi-Implicitly Method for

Pressure Linked Equation (SIMPLE) [17] is one of the most fre-
quently used algorithms in FVM.

The objective of this paper is to combine the LBM and FVM as a
coupled method to solve the fluid flow and heat transfer problem.
The total computational domain is divided into FVM and LBM
zones with a message passing zone between them. So there is an
artificial boundary for each sub-domain. It is necessary to obtain
the artificial information from the other sub-domain to fulfill the
coupled method. For the fluid flow and heat transfer simulation,
the problems under consideration are described using the macro-
scopic variables, such as velocity, temperature, pressure and den-
sity. And these variables in LBM are based on the density and
energy distributions results while they can be solved directly in
FVM. Meanwhile macroscopic variables can be transferred from
the density and energy distributions results directly. So it is quite
straightforward to obtain the FVM artificial boundary information
from the inner nodes in the LBM zone. But macroscopic variables
are not enough to obtain the corresponding density and energy dis-
tributions results.

Latt [18] and Latt et al. [19] coupled LBM and finite difference
method (FDM) for the pure fluid flow with the first-order expan-
sion of the lattice Boltzmann equation. However, the FDM itself
has the limitation when solving problems with complex computa-
tional domain [3]. This shortfall restricts the development of LBM-
FDM because the one of the most attractive advantages of LBM is
its suitability to solve the problems in complex computational
domain. Luan et al. [20] solved natural convection using the
LBM-FVM with the general reconstruction operator [21]and
obtained persuasive results. However general reconstruction
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operator is newly proposed to fulfill the combine method which
means more validations are needed for the general reconstruction
operator itself. The nonequilibrium scheme [15] is a valid LBM
boundary condition that was reported to have the second order
accuracy. This scheme is applied to obtain the density and energy
distributions on the LBM zone artificial boundary using the results
in FVM zone in this paper. The LBM is solving a compressible prob-
lem while FVM is based on incompressible assumption. Then a
pressure based correction method is applied to transfer density
from an incompressible domain to a compressible domain. Then
natural convections in a squared enclosure with different Rayleigh
numbers are solved using the coupled method and the results are
compared with those obtained from pure LBM and pure FVM for
validation of the coupled method.

2. Thermal LBM model

Two distribution functions are selected for the fluid flow and
heat transfer in LBM. The density and energy distributions are rep-
resented by fi and gi, which are related by the buoyancy force. For
the velocity field, D2Q9 model is preferred. There are nine local
particle velocities on each computing node as shown in Fig. 1.
These velocities are given by
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where c is the lattice speed.
The density and momentum can be obtained by
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By applying BGK model to Boltzmann equation [22], the equation
for density distribution, fi, is
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where Dt is the time step, and feq is the equilibrium distribution
function:
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Then the Navier–Stokes equation can be obtained through
Chapman-Enskog expansion [16] when the kinematic viscosity m
is related to the relaxation time sv in Eq. (4) by:

m ¼ c2
s sv �

1
2

� �
Dt ð7Þ

where cs is the speed of sound that is related to the lattice speed by
3c2

s ¼ c2

The buoyancy force can be obtained as:

Fi ¼ DtG � ðei � VÞ
p

f eq
i ð8Þ

Nomenclature

c lattice speed
cs speed of sound
ei particle speed
F body force
fi density distribution
g gravity acceleration (m/s2)
G effective gravitational acceleration (m/s2)
gi energy distribution
H height of the cavity (m)
Ma Mach number
Nu Nusselt number
p pressure (N/m2)
P nondimensional pressure
Pr Prandtl number
Ra Rayleigh number
t time (s)
T temperature (K)
u horizontal velocity (m/s)

U nondimensional horizontal velocity
v vertical velocity (m/s)
V nondimensional vertical velocity
V velocity

Greek Symbols
a thermal diffusivity (m2/s)
b volume expansion coefficient of the fluid (K�1)
h nondimensional temperature
l viscosity (N s/m2)
m kinematic viscosity (m2/s)
q density (kg/m3)
s nondimensional time
sv relaxation time for velocity
sT relaxation time for energy
xi value factor for velocity
xT

i value factor for energy

Fig. 1. Nine directions in D2Q9 model.
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