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a b s t r a c t

The problem of natural convective boundary layer flow of a non-Newtonian power-law fluid over an
isothermal horizontal plate, which does not admit a similarity solution, has been solved numerically
using a time-marching finite difference method. The analysis shows that the velocity, temperature
and pressure inside the boundary layer depend on two parameters, the non-Newtonian power-law
index (n) and the generalised Prandtl number (Pr⁄). For n > 1 (dilatant fluids), the u-velocity profiles
reveal that the maximum velocity attained increases but the thickness of the boundary layer decreases
as the value of n is progressively increased above unity. For n < 1 (pseudoplastic fluids), the reverse
occurs and the boundary layer thickness increases to a great extent while the maximum velocity is
reduced as the value of n is progressively decreased below unity. The magnitude of the normal velocity
component at the edge of the boundary layer is found to be smaller for dilatant fluids and larger for
pseudoplastic fluids as compared to Newtonian fluids. It has been found that the dilatant fluids show
improved heat transfer characteristics as compared to Newtonian and pseudoplastic fluids at the same
generalised Prandtl number. The non-existence of self-similar solutions for non-Newtonian power-law
fluids has been established, thus showing the utility of the numerical method developed to solve the
system of partial differential equations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection flow is driven by buoyancy forces generated
by density differences that can be caused by temperature gradients
in the fluid. Natural convection is commonly encountered in
processes like cooling of electronic equipments, nuclear reactors,
solar devices, in polymer processing industries, food industries,
etc. [1–4].

The present paper deals with natural convection of non-Newto-
nian fluids on horizontal surfaces. Natural convection from vertical
plates has been explored extensively. In comparison, the number of
studies on natural convection from horizontal surfaces is rather
limited. In case of a heated vertical plate, as the hotter fluid moves
up, colder fluid comes in from the surrounding, principally in the
horizontal direction. In case of a heated horizontal plate facing up-
ward, on the other hand, the buoyancy force gives rise to a pressure
gradient perpendicular to the plate which in turn results in a pres-
sure gradient along the plate. It is the latter that drives the natural
convective flow. Thus there is a significant difference between the
flow physics of natural convection on vertical and horizontal
surfaces. Unlike the boundary layer that forms due to forced

convection, the boundary layer on a horizontal plate due to natural
convection is such that op/oy – 0 and op/ox cannot be neglected in-
side the boundary layer (even when op1/ox is zero). Several of such
subtle physics of natural convection above a horizontal plate have
been included in the theory formulated in this paper.

Having explained the distinguishing features of horizontal sur-
faces, we turn our attention to the other important feature of the
present paper that is the fluid is non-Newtonian in nature. The
study of heat transfer in non-Newtonian fluids has gained much
importance due to a large number of industries (food processing,
heat exchanger and reactor cooling, biochemical processes, etc.)
dealing with these types of fluids [5–7]. The boundary layer flow
of non-Newtonian fluids exhibits characters different from that
of the conventional Newtonian fluids due to the non-linear varia-
tion of the shear stress with strain rate. There are several models
to describe non-Newtonian fluid behaviour [8]. The power-law
model [8] has been used widely to describe the flow of non-New-
tonian fluids, in which the viscosity is assumed to vary as follows:

l ¼ l0
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where n is the power-law index, constant for a particular fluid.
Depending on the value of n, fluids are classified into three broad
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categories: pseudoplastic (shear-thinning fluids) – n < 1, Newtonian
fluids – n = 1, and, dilatant (shear-thickening fluids) – n > 1.

The study of natural convection of a Newtonian fluid from a ver-
tical plate with both constant surface temperature and constant
wall heat flux is given by Burmeister [9]. Schlichting and Gersten
[10] have presented a similarity solution for natural convection
of a Newtonian fluid past a horizontal plate, which they referred
to as ‘‘indirect natural convection’’ for the reasons explained in
the second paragraph. According to them, the first similarity solu-
tion for isothermal, semi-infinite, horizontal plate was given by
Stewartson [11] who studied the case of a fluid with Pr = 0.7. Ro-
tem and Claassen [12] studied the problem of free convection over
a semi-infinite horizontal plate for power-law variation in plate
temperature and constant wall heat flux, and through experiments
showed how the boundary layer breaks down into large-eddy
instability some distance from the leading edge. Recently, a
similarity solution for natural convection of a Newtonian fluid for
complex boundary conditions has been given by Samanta and
Guha [13].

Acrivos [14] was the first to study laminar natural convection of
power-law fluids for several geometries. The experimental studies
of Gentry and Wollersheim [15], on isothermal horizontal cylin-
ders, were in good agreement with the theoretical predictions of
Acrivos [14]. Experiments on the free convection of pseudoplastic
fluids over horizontal wires were performed by Ng and Hartnett
[16], where, unlike the previous studies, the diameter of the cylin-
der was comparable to the boundary layer thickness. Shenoy and
Mashelkar [17] gave an extensive review on free convection in
non-Newtonian fluids. Huang and Chen [18] gave local similarity
solution for the natural convection of power-law fluids past a ver-
tical plate. The natural convection of a shear-thinning power-law
fluid (n = 0.95) past an isothermal vertical plate has been studied
by Ghosh Moulic and Yao [19]. Chamkha et al. [20] studied the un-
steady natural convection of power-law fluid past a vertical plate
in a non-Darcian porous medium. Mixed convection heat transfer

from a horizontal plate to power-law fluids was studied by Wang
[21]. However, the natural convection of non-Newtonian power-
law fluids over a horizontal plate has not been studied till the
present.

The present work studies the laminar natural convection
boundary layer flow of a non-Newtonian power-law fluid over a
semi-infinite horizontal flat plate maintained at a constant temper-
ature. The analysis reduces to that of a Newtonian fluid when n
(power-law index) equals 1, thus demonstrating internal consis-
tency of the solution approach. Natural convection in both shear-
thinning as well as shear-thickening fluids has been analysed in
the present paper.

2. Mathematical formulation

The x-axis is aligned along the plate from the leading edge while
the y-axis is directed normal to the plate against the direction of
gravity. The quiescent ambient fluid is maintained at a uniform
temperature T1 and pressure p1. The boundary layer equations
for a horizontal plate invoking the Boussinesq approximation are:
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where the viscosity is given by

Nomenclature

c�f reduced skin-friction co-efficient
cp specific heat capacity (J/kg K)
Ec Eckert number
Gr Grashof number
Gr⁄ generalised Grashof number
g acceleration due to gravity (m/s2)
h heat transfer coefficient (W/m2 K)
k thermal conductivity of the fluid (W/m K)
L reference length scale (m)
Nu⁄ reduced Nusselt number
n non-Newtonian power-law index
Pr Prandtl number
Pr⁄ generalised Prandtl number
p static pressure (Pa)
�p dimensionless static pressure
�p� stretched variable for dimensionless pressure
qw wall heat flux (W/m2)
Re Reynolds number
Re⁄ generalised Reynolds number
T temperature of the fluid (K)
u,m components of velocity along and normal to the plate

respectively (m/s)
�u; �m components of dimensionless velocity
u0 scaling velocity (m/s)
m̂ dimensionless normal velocity before scaling
x, y coordinates along and normal to the plate (m)

�x; �y dimensionless coordinates along and normal to the
plate

�x�; �y� stretched variables for dimensionless coordinates
ŷ dimensionless normal coordinate before scaling
D�y1 distance of first grid point from the plate normal to it

Greek symbols
a thermal diffusivity (m2/s)
b coefficient of volume expansion of the fluid (/K)
d boundary layer thickness (m)
e a positive number less than unity depicting the devia-

tion from Newtonian behaviour
g similarity variable
h dimensionless temperature
h⁄ stretched variable for dimensionless temperature
l dynamic viscosity (Pa s)
t kinematic viscosity (m2/s)
q density (kg/m3)
sw wall shear stress (Pa)
w dimensionless stream function
w⁄ stretched variable for dimensionless stream function

Subscripts
w value of the parameter at the plate surface
1 ambient condition
0 reference value or initial value
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