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a b s t r a c t

Wall conduction effects in multilayered, counterflow, parallel-plate heat exchangers are analyzed
theoretically and numerically. The analysis, carried out for constant property fluids, considers a hydrody-
namically developed laminar flow and neglects axial conduction both in the fluids and in the plates. The
temperature field is expanded as an infinite series in terms of a complete set of eigenfunctions associated
with sets of both positive and negative eigenvalues. In addition to the exact solution, an approximate
solution that retains only the first two terms in the eigenfunction expansion is considered. The approx-
imate two-term solution, which still incorporates the effect of higher order modes through apparent tem-
perature offsets introduced at the inlet/outlet sections, provides an accurate representation for the
temperature field away from the thermal entrance regions, thereby enabling simplified expressions for
the wall and bulk temperatures, local Nusselt numbers, and overall heat-transfer coefficient. As main out-
come of the analysis, it is seen that increasing the wall thermal resistance lowers the absolute value of
both positive and negative eigenvalues—thus reducing heat-exchanger effectiveness—and increases the
Nusselt number of the fluid with lower heat-capacity flow rate bringing it closer to its theoretical value
140=17 ¼ 8:2353 corresponding to a constant heat flux boundary condition. Moreover, the proposed two-
term solution is seen to reproduce with great accuracy the dependence of the outlet bulk temperatures
with the wall thermal resistance. The asymptotic solution for nearly-balanced heat exchangers is also
obtained, providing closed-form analytical expressions for this limiting case of practical interest.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Parallel-plate heat exchangers are widely used in chemical,
pharmaceutical, food processing, and many other industrial
applications. More recently, they have also found application in a
variety of emerging branches of thermal engineering. Thus, they
are currently used in miniaturized reaction systems involving het-
erogeneously catalyzed gas-phase reactions [1], in thermoelectric
generators that convert low-grade thermal energy into electrical
power [2,3], and in thermoacoustic engines and refrigerators [4].
In addition, they are a key component of many cryogenic systems
[5–7].

In recent years, there has also been a growing interest in the
development of polymer heat exchangers, due particularly to their
high resistance to fouling and corrosion. Specifically, the use of
polymers offers substantial weight, volume, space, and mainte-
nance cost savings in many applications over metallic heat
exchangers [8]. Nevertheless, the low thermal conductivity of

polymer materials typically results in a dominant wall heat trans-
fer resistance, which imposes serious restrictions on the thermal
design and operation of these devices [9–11].

Progress in the analysis of parallel-plate heat exchangers has
been significant in the last decades due to their simple geometry
and well established flow conditions [12]. In particular, the analy-
sis of the steady-state laminar heat transfer between different
streams coupled through compatibility conditions at the
boundaries constitutes the so-called conjugated Graetz problem
[13–15]. Under certain simplifying assumptions—constant prop-
erty fluids and fully developed laminar flow—the problem becomes
linear and is amenable to an elegant solution based on eigenfunc-
tion expansions, which in counterflow systems involves sets of
positive and negative eigenfunctions associated with sets of posi-
tive and negative eigenvalues [15–17].

The aim of this paper is to generalize the recent work on lami-
nar counterflow parallel-plate heat exchangers carried out by Vera
and Liñan [18,19] so as to include the effect of a finite wall thermal
resistance. The analysis, based on the seminal contributions by
Nunge and Gill [16,17], uses symbolic algebra to write closed form
analytical expressions for the eigenfunctions, leading to an exact
analytical eigencondition that provides the eigenvalues
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numerically. In addition to the exact solution—expanded as an infi-
nite series using the complete set of eigenfunctions—an approxi-
mate solution that retains only the first two modes in the
eigenfunction expansion is derived. This approach, which still
incorporates the effect of the higher order eigenfunctions through
apparent temperature offsets induced at the inlet/outlet sections,
provides accurate representations for the temperature field away
from the thermal entrance regions. The accompanying expressions
for the wall and bulk temperatures, local heat-transfer rate, overall
heat-transfer coefficient, Nusselt numbers, and outlet bulk
temperatures may be useful for engineering applications even for
moderately short heat exchangers.

The paper is organized as follows. In Section 2, we present the
dimensionless formulation of the problem, introducing the govern-
ing dimensionless parameters. In Section 3, we expand the solution
as an infinite series of eigenfunctions and derive the linear system
for the expansion coefficients. In Section 4, we propose an
approximate two-term solution that involves only the lowest order
eigenvalue and eigenfunction. In Section 5, we comment on the rel-
evance of our results in the context of classical heat exchanger
analysis. In Section 6, we validate the exact and approximate solu-
tions against numerical solutions, and discuss the main effects of
the wall thermal resistance on heat-exchanger performance. Final-
ly, in Section 7, the main conclusions of the analysis are presented.

As additional material, to be used in the discussion of results, in
Appendix A we give the asymptotic solution in the limiting case of

nearly-balanced heat exchangers, while in Appendix B we address
the degenerate case of highly-unbalanced heat exchangers.

2. Problem formulation

In this paper we analyze the heat transfer between two con-
stant-property newtonian fluids flowing through a multilayered
counterflow parallel-plate heat exchanger composed by a rela-
tively large number of channels separated by plates of finite thick-
ness, dw, and thermal conductivity, kw. The conducting plates allow
the exchange of heat through a section of length L, presenting insu-
lated regions at both ends of the heat exchange region, where no
heat transfer is allowed [20]. In the configuration considered here,
the two fluids, denoted by 1 and 2 (hereafter, the subscript i will be
used indistinctly for both fluids, i ¼ 1, 2), flow in opposite
directions in adjacent channels. Then, if the characteristic cross-
sectional dimension of the heat exchanger is large compared with
the channel width, 2ai, the temperature field, as seen with this
scale, appears as periodic in the transverse direction, with period
2ða1 þ a2Þ. As a result, when describing the temperature field in
the unitary cell of the heat exchanger we can use symmetry
boundary conditions at the channel symmetry planes, where no
thermal energy can be transferred.

Fig. 1 presents a sketch of the theoretical model under study,
including the coordinate system, the velocity profiles, the inlet

Nomenclature

A expansion coefficient
�A Oð1Þ expansion coefficient in the limit j�j � 1
�B Oð1Þ expansion coefficient in the limit j�j � 1
ai channel half-width of fluid i
Cn expansion coefficient corresponding to the n-th eigen-

function
ci specific heat of fluid i
fn n-th eigenfunction in the limit jw !1
gn n-th eigenfunction for finite jw

Gn;i contribution of order �n to the 0-th eigenfunction in the
limit j�j � 1

hi heat-transfer coefficient of fluid i
k dimensionless parameter, ða1k2Þ=ða2k1Þ
ki thermal conductivity of fluid i
kw thermal conductivity of the wall
ln contribution of order �n to the eigenvalue k0 in the limit

j�j � 1
L length of the heat exchanger
M Whittaker’s function, Mj;lðzÞ
m dimensionless parameter, ða2Pe2Þ=ða1Pe1Þ
Nui Nusselt number of fluid i;hið4aiÞ=ki

Pei Peclet number of fluid i;2aiVi=ai

Pri Prandtl number of fluid i; mi=ai

Rei Reynolds number of fluid i;2aiVi=mi

T temperatureeU dimensionless overall heat-transfer coefficient
ui longitudinal velocity of fluid i
Vi average velocity of fluid i
W Whittaker’s function, Wj;lðzÞ
wðyiÞ weight function, ð3=4Þð1� y2

i Þ
X longitudinal distance from the inlet of fluid 1
Yi transverse distance from channel i symmetry plane
yi dimensionless transverse coordinate, Yi=ai

Greek letters
ai thermal diffusivity of fluid i; ki=ðqiciÞ
Di bulk temperature offset of fluid i at the inlet
dw thickness of the wall
� small parameter, 1� ðmkÞ�1

e heat exchanger effectiveness
C Gamma function, CðzÞ
j first argument of Whittaker functions
jw dimensionless parameter, ða1kwÞ=ðdwk1Þ
ĵ lumped variable, m1=3k
kn n-th eigenvalue
l second argument of Whittaker functions
m dimensionless local heat-transfer rate, @h1=@y1jy1¼1
mi kinematic viscosity of fluid i
qi density of fluid i
hi dimensionless temperature of fluid i
n dimensionless longitudinal coordinate
X�n coefficients defined by Eq. (41)

Subscripts
i subscript used indistinctly for fluids 1 and 2
in inlet
L length of the heat exchanger
m bulk, or mixing-cup, temperature
n corresponding to the n-th eigenvalue/eigenfunction
out outlet
w heat-exchanging wall

Superscripts
(0) zeroth-order two-term solution
(1) first-order two-term solution
½N� 2ðN þ 1Þ-term truncated exact solution
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