International Journal of Heat and Mass Transfer 70 (2014) 979-989

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions

Dongyan Gao^{a,*}, Zhenqian Chen^b, Linghai Chen^a

^a School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, PR China
^b School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China

ARTICLE INFO

Article history: Received 15 May 2013 Received in revised form 8 November 2013 Accepted 15 November 2013 Available online 21 December 2013

Keywords: Lattice Boltzmann method Natural convection Porous media Local thermal non-equilibrium

ABSTRACT

A thermal lattice Boltzmann model for natural convection in porous media under local thermal nonequilibrium conditions is proposed through an appropriate selection of equilibrium distribution functions and discrete source terms. In this model, two new distribution functions are introduced to simulate the temperature fields of the fluid and solid matrix phases in addition to the density distribution function for the velocity field. The macroscopic energy equations are recovered from the corresponding lattice Boltzmann equations by the Chapman–Enskog procedure. Detailed numerical tests of the proposed model are carried out for three different cases under both steady state and transient conditions. The influence of various parameters such as ratio of solid-to-fluid thermal conductivities, interstitial Nusselt number, Rayleigh number, and Darcy number on the thermal and flow fields is investigated. The present numerical results agree well with the solutions reported in previous studies. Therefore, it is verified that the present model can be served as a feasible and efficient tool for non-equilibrium natural convection problems in porous media.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection in porous media has long been the subject of both scientific and engineering investigations in view of its wide range of applications, such as in geothermal systems, underground spread of pollutants, thermal management of electronics, nuclear reactor and so on. It has been frequently investigated by invoking the assumption of local thermal equilibrium (LTE) between the working fluid and solid matrix [1,2]. In many practical applications, however, the assumption of LTE will break down [3]. For instance, when studying a rapid transport of heat in porous media [4], or when there is a significant internal heat generation occurring in fluid phase or solid phase [5,6], or when the difference in thermal conductivities and heat capacities between fluid and solid phases is significant, the local rate of change of temperature for two phases will be no longer equal and thus the assumption of LTE must be discarded [7–9], as pointed out by Minkowycz [4], Kaviany [3] and many others. In the local thermal non-equilibrium (LTNE) situations, instead of having a single energy equation which describes the heat transfer of the system, two energy equations are usually adopted to model the temperature fields of the fluid and solid phases [5-14]. In addition, appropriate coupling is necessary between the solid and fluid phase energy equations to account for the interfacial heat transfer.

The lattice Boltzmann method (LBM), developed over the last two decades, has emerged as a powerful approach for studying complex fluid flow, heat transfer and other complicated physics [15–18]. Compared with traditional computational fluid dynamics methods, it has many attractive advantages, such as its simple implementation, parallelizability and ability to handle complex geometry and boundary conditions such as those in porous media. When applying the LBM to model fluid flows and transport problems in porous media, these are generally two approaches, i.e. the pore scale approach and the representative element volume (REV) scale approach. The LBM at the pore scale is the most direct way to modeling fluid flows in particular and transport problems with complex pore geometry by the standard lattice Boltzmann (LB) equation and can obtain local information of the transport behaviors. Therefore, this method is effective to study the macroscopic relations and the microscopic mechanism of flow and transport processes through porous media. Early in 1989, the first LB application for flows in random porous media was performed by Succi et al. [19]. Later, the LBM at the pore scale has been extensively adopted for investigating transport problems in porous media [20-28]. However, it needs detailed geometric information of porous matrix, and thus the size of computation domain cannot be too large due to limited computer resources. An alternative approach is the LBM at the REV scale where average transport

^{*} Corresponding author. Tel.: +86 25 8611 8355. E-mail address: njgdy2010@163.com (D. Gao).

^{0017-9310/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.050

Nomenclature

h	number of discrete velocities	Ste	Stefan number $Ste = c \Delta T/I a$
C	lattice speed (m/s)	t	time (s)
c	specific heat at constant pressure $(kl/(kgK))$	т Т	temperature (K)
Cp C	sound speed (m/s)	T	temperature of cold wall (K)
D_{g}	Darcy number $Da = K/H^2$		temperature of the end of PCM melting (K)
Du d	parcy number, $Du = R/II$	$T_{f,l}$	temperature at the beginning of DCM melting (K)
u_p	discrete lattice velocity in direction $i(m/s)$	$I_{f,S}$	temperature of bot wall (K)
e _i En	anthalmy (ll/lkg)	T _h	malting temperature (K)
EII En	entitletpy (KJ/Kg)		dimensionless velocity $U = \alpha U l \alpha$
Ellį Em	entitlatpy at the end of melting (KJ/Kg)	0	unification of the second sec
EIIs c	density distribution function in direction i (lag/m ³)	u V	velocity (III/S)
Ji	density distribution function in direction $t(kg/m^2)$	V	Cartaging accuriting to a (m/s)
J_i^{i}	equilibrium distribution function of density in direction $(1 - 1 - 3)$	x, y, z	Cartesian coordinates (m)
-	$l(kg/m^2)$	X, Y, Z	dimensionless coordinates, $X = x/H$, $Y = y/H$, $Z = z/H$
F	body force per unit mass (N/kg)		
\mathbf{F}_i	discrete body force in direction i (kg/(m ³ s))	Greek symbols	
Fo	Fourier number, $Fo = \alpha t/H^2$	α	thermal diffusivity (m ² /s)
F_{ε}	Forchheimer form coefficient	β	coefficient of thermal expansion (1/K)
g	acceleration due to gravity (m/s²)	Γ	ratio of thermal diffusivity of solid matrix and fluid
gi	temperature distribution function in direction <i>i</i> (K)	γ	liquid fraction in pore space
g_i^{eq}	equilibrium temperature distribution function in direc-	δχ	lattice space (m)
	tion i (K)	δt	time step (s)
Н	height of the domain or characteristic length (m)	3	porosity of porous media
На	dimensionless internal heat source, $Ha = qH^2/(\Delta Tk_f)$	θ	dimensionless temperature, $\theta = (T - T_{ref})/\Delta T$
h_V	volumetric heat transfer coefficient (W/(m ³ K))	λ	ratio of thermal conductivity of solid matrix and fluid
Ι	unit tensor	λe	ratio of equivalent thermal conductivity to fluid thermal
J	viscosity ratio, $J = v_e/v_f$	c	conductivity
k	thermal conductivity (W/(m K))	v	kinematic viscosity (m ² /s)
Κ	permeability (m ²)	Ĕ	small expansion parameter
La	latent heat of melting (kJ/kg)	, D	density (kg/m ³)
п	dimensional number	r σ	ratio of volumetric heat capacities of solid matrix and
Nup	interfacial Nusselt number based on pore diameter, Nup	-	fluid
	$=h_V d_p^2/k_f$	<i>Τ</i> ε <i>Τ</i> τ	Dimensionless relaxation time
Nu _v	interfacial Nusselt number, $Nu_V = h_V H^2/k_f$	(); ();	weight number in direction <i>i</i>
p	pressure (Pa)	001	
P	dimensionless pressure, $P = pH^2/(\rho v \alpha)_f$	Subcerin	tc
Pr	Prandtl number, $Pr = v_f \alpha_f$	Subscrip	offective or equivalent
q	internal heat source term (W/m ³)	e f	
ŕ	space position (m)	J	liulu direction i in a lattica
Ra	Ravleigh number, $Ra = \mathbf{g} \beta \Delta T H^3 / (v_f \alpha_f)$	1	ciliection / in a lattice
Sr. Sr.	source term, discrete source term (W/m^3)	S	solid matrix
Sui	discrete source term related to velocity (W/m^3)		
	· · · · · · · · · · · · · · · · · · ·		

properties are only considered. This approach has been proved to be simple and computationally efficient method for modeling and solving transport problems in porous media [29–33].

The LBM at the REV scale is generally accomplished by including an additional term to the standard lattice Boltzmann equation (LBE) to account for the presence of a porous medium [29–35]. Guo and Zhao [31] developed a LB model to solve incompressible flow in porous media modeling the Navier-Stokes equation at the REV scale, in which the main idea is to include the porosity into the equilibrium distribution functions and add a forcing term accounting for the drag forces of the medium. Guo and Zhao [32] further extended LBM to modeling the natural convection in porous media, in which a density distribution function equation is used for modeling the velocity field, while another temperature distribution function equation for simulating the temperature field. Their numerical results agreed well with the numerical solutions in the literature. Seta [33] confirmed the reliability and computational efficiency of LBM in simulating these types of problem. Shokouhmand et al. [34] performed simulations of laminar flow and natural convection heat transfer between two parallel plates of a conduit filled with a porous media fully and partially by means of the LBM. Rong et al. [34] employed the LBM to simulate free convection flow through an annular filled with porous media. Gao and Chen [36] applied the LBM to model natural convection with phase change in porous media. However, almost all of previous LB models [29–36] for natural convection in porous media are based on the single energy equation and the assumption of local thermal equilibrium.

The aim of this work is to extend the LBM to copy with natural convection in porous media under local thermal nonequilibrium conditions, as well as investigating its practicability and accuracy. To this purpose, through an appropriate selection of the equilibrium distribution functions and discrete source terms, we employ a three-distribution-function model based on the passive scalar approach [37,38], in which one represents the velocity field and other two simulate the temperature fields of the fluid and the solid matrix separately. In order to validate the lattice Boltzmann model proposed, three numerical tests are performed to compare with previous results obtained by other methods in the literature. Download English Version:

https://daneshyari.com/en/article/657658

Download Persian Version:

https://daneshyari.com/article/657658

Daneshyari.com