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a b s t r a c t

A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-
equilibrium conditions is proposed through an appropriate selection of equilibrium distribution functions
and discrete source terms. In this model, two new distribution functions are introduced to simulate the
temperature fields of the fluid and solid matrix phases in addition to the density distribution function for
the velocity field. The macroscopic energy equations are recovered from the corresponding lattice
Boltzmann equations by the Chapman–Enskog procedure. Detailed numerical tests of the proposed
model are carried out for three different cases under both steady state and transient conditions. The
influence of various parameters such as ratio of solid-to-fluid thermal conductivities, interstitial Nusselt
number, Rayleigh number, and Darcy number on the thermal and flow fields is investigated. The present
numerical results agree well with the solutions reported in previous studies. Therefore, it is verified that
the present model can be served as a feasible and efficient tool for non-equilibrium natural convection
problems in porous media.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection in porous media has long been the subject of
both scientific and engineering investigations in view of its wide
range of applications, such as in geothermal systems, underground
spread of pollutants, thermal management of electronics, nuclear
reactor and so on. It has been frequently investigated by invoking
the assumption of local thermal equilibrium (LTE) between the
working fluid and solid matrix [1,2]. In many practical applications,
however, the assumption of LTE will break down [3]. For instance,
when studying a rapid transport of heat in porous media [4], or
when there is a significant internal heat generation occurring in
fluid phase or solid phase [5,6], or when the difference in thermal
conductivities and heat capacities between fluid and solid phases is
significant, the local rate of change of temperature for two phases
will be no longer equal and thus the assumption of LTE must be
discarded [7–9], as pointed out by Minkowycz [4], Kaviany [3]
and many others. In the local thermal non-equilibrium (LTNE) sit-
uations, instead of having a single energy equation which describes
the heat transfer of the system, two energy equations are usually
adopted to model the temperature fields of the fluid and solid
phases [5–14]. In addition, appropriate coupling is necessary be-

tween the solid and fluid phase energy equations to account for
the interfacial heat transfer.

The lattice Boltzmann method (LBM), developed over the last
two decades, has emerged as a powerful approach for studying
complex fluid flow, heat transfer and other complicated physics
[15–18]. Compared with traditional computational fluid dynamics
methods, it has many attractive advantages, such as its simple
implementation, parallelizability and ability to handle complex
geometry and boundary conditions such as those in porous media.
When applying the LBM to model fluid flows and transport prob-
lems in porous media, these are generally two approaches, i.e.
the pore scale approach and the representative element volume
(REV) scale approach. The LBM at the pore scale is the most direct
way to modeling fluid flows in particular and transport problems
with complex pore geometry by the standard lattice Boltzmann
(LB) equation and can obtain local information of the transport
behaviors. Therefore, this method is effective to study the macro-
scopic relations and the microscopic mechanism of flow and trans-
port processes through porous media. Early in 1989, the first LB
application for flows in random porous media was performed by
Succi et al. [19]. Later, the LBM at the pore scale has been exten-
sively adopted for investigating transport problems in porous med-
ia [20–28]. However, it needs detailed geometric information of
porous matrix, and thus the size of computation domain cannot
be too large due to limited computer resources. An alternative
approach is the LBM at the REV scale where average transport
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properties are only considered. This approach has been proved to
be simple and computationally efficient method for modeling
and solving transport problems in porous media [29–33].

The LBM at the REV scale is generally accomplished by includ-
ing an additional term to the standard lattice Boltzmann equation
(LBE) to account for the presence of a porous medium [29–35]. Guo
and Zhao [31] developed a LB model to solve incompressible flow
in porous media modeling the Navier–Stokes equation at the REV
scale, in which the main idea is to include the porosity into the
equilibrium distribution functions and add a forcing term
accounting for the drag forces of the medium. Guo and Zhao [32]
further extended LBM to modeling the natural convection in
porous media, in which a density distribution function equation
is used for modeling the velocity field, while another temperature
distribution function equation for simulating the temperature
field. Their numerical results agreed well with the numerical
solutions in the literature. Seta [33] confirmed the reliability and
computational efficiency of LBM in simulating these types of
problem. Shokouhmand et al. [34] performed simulations of
laminar flow and natural convection heat transfer between two

parallel plates of a conduit filled with a porous media fully and
partially by means of the LBM. Rong et al. [34] employed the
LBM to simulate free convection flow through an annular filled
with porous media. Gao and Chen [36] applied the LBM to model
natural convection with phase change in porous media. However,
almost all of previous LB models [29–36] for natural convection
in porous media are based on the single energy equation and the
assumption of local thermal equilibrium.

The aim of this work is to extend the LBM to copy with
natural convection in porous media under local thermal non-
equilibrium conditions, as well as investigating its practicability
and accuracy. To this purpose, through an appropriate selection
of the equilibrium distribution functions and discrete source
terms, we employ a three-distribution-function model based on
the passive scalar approach [37,38], in which one represents
the velocity field and other two simulate the temperature fields
of the fluid and the solid matrix separately. In order to validate
the lattice Boltzmann model proposed, three numerical tests are
performed to compare with previous results obtained by other
methods in the literature.

Nomenclature

b number of discrete velocities
c lattice speed, (m/s)
cp specific heat at constant pressure (kJ/(kg K))
cs sound speed (m/s)
Da Darcy number, Da = K/H2

dp pore diameter (m)
ei discrete lattice velocity in direction i (m/s)
En enthalpy (kJ/kg)
Enl enthalpy at the end of melting (kJ/kg)
Ens enthalpy at the beginning of melting (kJ/kg)
fi density distribution function in direction i (kg/m3)
f eq
i equilibrium distribution function of density in direction

i (kg/m3)
F body force per unit mass (N/kg)
Fi discrete body force in direction i (kg/(m3 s))
Fo Fourier number, Fo = at/H2

Fe Forchheimer form coefficient
g acceleration due to gravity (m/s2)
gi temperature distribution function in direction i (K)
geq

i equilibrium temperature distribution function in direc-
tion i (K)

H height of the domain or characteristic length (m)
Ha dimensionless internal heat source, Ha = qH2/(DTkf)
hV volumetric heat transfer coefficient (W/(m3 K))
I unit tensor
J viscosity ratio, J = me/mf

k thermal conductivity (W/(m K))
K permeability (m2)
La latent heat of melting (kJ/kg)
n dimensional number
Nup interfacial Nusselt number based on pore diameter, Nup

= hVd2
p/kf

NuV interfacial Nusselt number, NuV = hVH2/kf

p pressure (Pa)
P dimensionless pressure, P = pH2/(qma)f

Pr Prandtl number, Pr = mf/af

q internal heat source term (W/m3)
r space position (m)
Ra Rayleigh number, Ra = |g|bDTH3/(mfaf)
Sr, Sri source term, discrete source term (W/m3)
Sui discrete source term related to velocity (W/m3)

Ste Stefan number, Ste = cp,fDT/La
t time (s)
T temperature (K)
Tc temperature of cold wall (K)
Tf,l temperature at the end of PCM melting (K)
Tf,s temperature at the beginning of PCM melting (K)
Th temperature of hot wall (K)
Tm melting temperature (K)
U dimensionless velocity, U = uH/af

u velocity (m/s)
V temporal velocity (m/s)
x, y, z Cartesian coordinates (m)
X, Y, Z dimensionless coordinates, X = x/H, Y = y/H, Z = z/H

Greek symbols
a thermal diffusivity (m2/s)
b coefficient of thermal expansion (1/K)
C ratio of thermal diffusivity of solid matrix and fluid
c liquid fraction in pore space
dx lattice space (m)
dt time step (s)
e porosity of porous media
h dimensionless temperature, h = (T � Tref)/DT
k ratio of thermal conductivity of solid matrix and fluid
ke ratio of equivalent thermal conductivity to fluid thermal

conductivity
m kinematic viscosity (m2/s)
n small expansion parameter
q density (kg/m3)
r ratio of volumetric heat capacities of solid matrix and

fluid
sf, sT Dimensionless relaxation time
xi weight number in direction i

Subscripts
e effective or equivalent
f fluid
i direction i in a lattice
s solid matrix
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