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a b s t r a c t

The main objective of this work is the application of the topological optimization procedure to heat trans-
fer problems considering multiple materials. The topological derivative (DT) is employed for evaluating
the domain sensitivity when perturbed by inserting a small inclusion. Electronic components such as
printed circuit boards (PCBs) are an important area for the application of topological optimization. Gen-
erally, geometrical optimization involving heat transfer in PCBs considers only isotropic behavior and/or
a single material. Multiple domains with anisotropic characteristics take an important role on many
industrial products, for instance when considering PCBs which are often connected to other components
of different materials. In this sense, a methodology for solving topological optimization problems consid-
ering anisotropy and multiple regions with embedded heat sources is developed in this paper. A direct
boundary element method (BEM) is employed for solving the proposed numerical problem.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Shape and topology optimization are of high importance for
engineering problems. The search for optimization methods with
low computational cost, which deliver the best solutions for the
problem under consideration, play an important role in the aca-
demic community. The choice of the numerical method to be
employed is based on a number of features. Among the numerical
methods that can be classified as classical, and which have been
successfully employed for topology optimization, are the SIMP
(solid isotropic method with penalization), ESO (evolutionary
structural optimization) and level set methods. All these methods
are generally performed by taking the finite element method
(FEM) as the numerical method of choice, and are often applied
for solving elasticity problems. According to Shiah et al. [1], mate-
rials with anisotropic properties have been employed for a great
number of applications since the earlier 1960s. High performance
is achieved when a composite is constructed by combining two
or more materials. Despite its importance, very few works are
found in the literature considering topology optimization for
anisotropic materials applied for heat transfer, when compared

to elasticity problems. Li et al. [2] developed a computational pro-
cedure based on FEM and ESO for the topology design of heat con-
duction in isotropic fields. Zhang and Liu [3] developed a new
method based on topology optimization for solving heat conduc-
tion problems for isotropic media with distributed heat sources.
This method was able to reconstruct the conducting paths by
distributing high conductive materials. Heat flow control within
a composite material was studied by [4]. A gradient based optimi-
zation routine coupled with an FEM solver was employed in an
iterative process for determining the distribution of the thermo-
physical parameters. Based on these parameters, the optimal
conductivity heat transfer path in the composite was designed.
Another concept recently employed for topology optimization
using BEM instead of FEM is the topological derivative [5,6]. Some
results employing DT were also performed using FEM, but it is
worth noting that the BEM characteristics are attractive for optimi-
zation procedures once this method has no mesh dependence and
low computational cost. The DT measures the sensitivity of a given
shape functional when the domain is perturbed by an infinitesimal
perturbation, such as the insertion of holes, inclusions and even
cracks. This concept has been successfully used for a wide range
of problems in addition to topology optimization, such as image
processing [7] and fracture mechanics [8]. Many efforts for extend-
ing this concept for more complex problems have been done in the
last years. Recently, [9,10] obtained a closed form for the DT

considering the total potential energy associated to an anisotropic
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and heterogeneous heat diffusion problem, when a small circular
inclusion of the same nature of the bulk phase is introduced at
an arbitrary point of the domain. This closed formula was derived
in its general form and particularized for heterogeneous and
isotropic media, showing agreement with the Amstutz [11] deriva-
tion. On the basis of previous relevant work by one of the authors
[5,12], this paper aims at extending an optimization procedure for
heat transfer problems considering heterogeneous materials using
BEM and DT. The derivation of an integral equation valid over all
the external boundaries of the different material regions, without
due consideration for the interfaces between them, is not impossi-
ble, despite the complexity involved. Alternatively, a conforming
mapping technique is implemented to reduce the steady-state
anisotropic field to an equivalent isotropic domain, avoiding some
new derivations [1]. The influence of the anisotropic conductivity
properties imposed to the inclusion and matrix on the final topol-
ogy will be investigated. The manuscript is organized as follows.
The BEM treatment of multi-domain mapping is described in
Section 2. In Section 3, the architecture of the optimization process
is presented, as well as the DT sensitivity formula used. A sample of
two-dimensional numerical problems is outlined. The numerical
results are presented and discussed in Section 5. Finally, the
conclusions are given in Section 5.

2. BEM treatment of multi-domain mapping

Many research works have devoted substantial efforts on
developing efficient and robust topology optimization procedures
during the last decades. The present work is focused on anisotropic
multi-regions for heat diffusion problems. When dealing with non-
homogeneous composites, it is usually necessary to split the
domain into several different materials held together, and treat
each one in turn. The derivation of an integral equation valid over
all the external boundaries of the different material regions
without due consideration for the interfaces between them is not
impossible, despite the complexity involved. Alternatively, a con-
forming mapping technique can be used to reduce the steady-state
anisotropic field to an isotropic equivalent domain, avoiding some
new derivations. Some works have successfully employed a linear
coordinate transformation for solving anisotropic thermal field
problems with FEM and/or BEM. The first works devoted to the
mapping technique were presented by [13,14]. Recently, Shiah
and Tan [15] presented a method for reducing a three-dimensional
steady-state anisotropic field problem to an equivalent isotropic
one, governed by the Laplace equation in a mapped domain.
Another work presented by [1] expanded this technique to the heat
conduction in composites consisting of multiple anisotropic media
for 2D and 3D. Despite the mapping technique formulation being
available for 3D problems, only 2D problems have been considered.
Furthermore, the DT formula for calculating the domain sensitivi-
ties due to a perturbation caused by the insertion of a small
inclusion is only valid for 2D problems [9]. Problems governed by
the Poison equation are well known in the BEM literature [16].
The boundary integral equation for this problem is as follows:

cðgÞ/ðgÞ ¼
Z

C
qðg; nÞUðg; nÞd�CðnÞ � � � �

Z
C

/ðnÞUðg; nÞd�CðnÞ

�
Xn

m¼1

bmUðg;MnÞ ð1Þ

where / and q represent the temperature and its normal gradient,
respectively. The variable n represents the unit outward normal
vector along the boundary while �C is used to denote the boundary
on the mapped domain.

The source and field points are designated by the variables g
and n. The value of c(g) depends on the geometry at g. The variable

bm is the mth internal heat-source point. The fundamental solu-
tions for the potential and its gradient are represented by U(g,n)
and T(g,n) and given by,

Uðg; nÞ ¼ 1
4pr and Tðg; nÞ ¼ � 1

4pr2 nir;i for 3D

UðnÞ ¼ 1
2p lnð1rÞ and TðnÞ ¼ � 1

2pr nir;i for 2D
ð2Þ

After the usual discretization of the boundary into boundary ele-
ments, Eq. (1) is applied at each boundary nodal point ðgÞ, generat-
ing the system of equations for a single domain. The original
geometry ðCÞ is mapped into an isotropic equivalent domain ðCÞ
by using a linear coordinate transformation,

½X1X2� ¼ ½FðKijÞ�½x1x2�T

½x1; x2� ¼ ½F�1ðKijÞ�½X1X2�T

where Kij is the conductivity coefficient and [F(Kij)] as well as
[F�1(Kij)] are defined by,
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Now, the collocation process for solving the integral equation (1)
should be done on the distorted domain and this procedure also
requires a mapping of the Neumann boundary conditions, as
depicted in Fig. 1. It is important to note that the nodal potentials
remain unchanged for corresponding points between the physical
(x1, x2) and mapped coordinate systems (X1, X2), since the tempera-
ture is a scalar field.

The Neumann boundary conditions are mapped according to
the relation,

dT
dn
¼ @T

@x1

Kxxffiffiffiffi
D
p þ @T

@x2

Kxyffiffiffiffi
D
p

� �
n1 þ

@T
@x2

� �
n2 ð3Þ

Taking into account the boundary conditions imposed to the prob-
lem, a set of simultaneous equations for unknown and known tem-
perature or its normal derivative at nodal points may now be solved
by standard methods. Once the system of equations is solved, an
inverse mapping must be further employed for recovering the
potential gradients on the original domain, as follows,

dT
dn
¼ uT

i F
FT nT

FT n
��� ��� ð4Þ

where n is the outward normal vector on the mapped domain. The
variables ui represent the temperature gradients along the mapped
boundary, and are defined as,

uT
i ¼

@T
@X1

@T
@X2

� �
ð5Þ

with each temperature gradient of Eq. (5) calculated by

@T=@x1 ¼ ðdT=dnÞn1

@T=@x2 ¼ ðdT=dnÞn2
ð6Þ

When dealing with non-homogeneous media, appropriate thermal
compatibility and equilibrium conditions along the interfaces of
conjoint materials must be supplied. As explained before, when
the anisotropic domain is transformed to an equivalent isotropic
one, it results in a deformed geometry. The inserting of an inclusion
with different properties inside the matrix will result in an overlap
or separation of the interfaces of the conjoint materials (see Fig. 1).
For a non-cracked interface between isotropic materials, the com-
patibility equation is imposed as

T1 ¼ T2 ð7Þ

where the superscripts denote materials 1 and 2, respectively. The
above relation still holds for anisotropic materials, but special
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