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a b s t r a c t

In this paper, we compare the Marangoni effect and the effect of the Prandtl number variation on features
of the liquid film rupture under the action of a thermal load and show a principal difference between
these two effects. Results of computational analysis allow us to make the following conclusions. When
affecting on the free surface of the plane liquid film by thermal beam, in order to obtain the initial holes
of the same size in films with various thermal physical properties, one should apply a thermal load of a
certain well-defined type, more specifically, concentrated thermal load, which provides the predeter-
mined temperature at least on one of the film boundaries. In this case the size of the holes will depend
only on the width of a thermal beam applied to the film free surface. Paper presents the solutions of the
model problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that if the thermal load is applied on the free surface
of a thin liquid film, the film is deformed and it can rupture. The
rupture of the film can be accompanied by the formation of a drop,
whose size depends on the type of the thermal load applied on the
film free surface. Droplet generation conditions during the film
rupture were investigated in [1,2].

The rupture of the film located on another liquid was studied
experimentally and numerically by Bratukhin et al. [3]. It was
shown, that the initial deformation and subsequent rupture of
the film can be caused by various factors, such as an addition of
a small dose of surfactant to the free surface of the film, local heat-
ing or an action of a directed air stream.

The thermal physical properties of the film affect the features of
its rupture caused by an action of the thermal beam. There are two
governing parameters associated with the temperature, which is
generated under the action of the thermal load: these are Marang-
oni and Prandtl numbers. Majority of publications are related to
investigations of Marangoni effect and other effects in thin liquid
layer lying on a solid substrate [4–6]. In this paper, we investigate
features of a film rupture depending on the Marangoni and the Pra-
ndtl numbers in film located over a deep liquid. We consider the
deformation processes and rupture of the film assuming that the

deep liquid does not move and is not deformed. In order to
describe these processes, a mathematical model based on the
two-dimensional Navier–Stokes equations is exploited, where the
film is considered as the thin layer of a viscous non-isothermal
liquid. Special attention in this work is focused on the derivation
of the boundary conditions on interfaces between film and gas,
as well as film and deep liquid.

2. Mathematical model

A plane thin liquid film with the density q, kinematical viscosity
m and surface tension coefficient r(T) is placed over another deep
liquid with the density, which exceeds the density of the film.
The liquids are immiscible and they are limited by two solid planes
x = 0 and x = L. We assume that y = 0 is the boundary between the
film and deep liquid and it is not deformed (see Fig. 1). In this fig-
ure, y = f(t,x) is the free surface of the film in selected coordinates;
h0 is the film thickness at initial time moment; g is the gravity
vector. Concentrated thermal load effects the film free surface in
the form of thermal beam with a width d. Under the action of this
thermal beam, the film changes its shape and further ruptures.
Assuming that the liquid is incompressible, and the density and
the viscosity are constants, we describe the film motion and the
heat transfer by the Navier–Stokes equations which are written
in terms of w (stream function), x (vorticity), and the heat transfer
equation for h (temperature) [7–9]:
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Length, velocity and pressure scales are h0, v0 = m/h0 and P0 ¼ qv2
0,

respectively, so that the Reynolds number is Re = 1. Here, Pr is the
Prandtl number, h = (T � T0)/dT (T0 is the characteristic temperature,
dT is the temperature drop). The stream function and the vorticity
are defined by the relations:

u ¼ @w
@y

; v ¼ � @w
@x

; x ¼ @v
@x
� @u
@y
;

where u and v are longitudinal and transverse components of the
velocity ~v in selected co-ordinates (see Fig. 1).

We assume that initial conditions are based on the fact that the
film is plane and does not move; the temperature h(0,x,y) = 0 for
whole domain.

2.1. Boundary conditions on the free gas-film surface f(t, x)

Let us determine the normal and tangent vectors to the free sur-
face y = f(t,x) in any point as
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and assume that the surface tension coefficient r(T) is a linear func-
tion of the temperature

rðTÞ ¼ r0ð1� rTðT � T0ÞÞ; rT ¼ �
1
r0
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dT
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;

where r0 = r(T0), rT > 0. The boundary conditions at the free surface
are specified in the form of kinematic and dynamic conditions
[10,11]. Ignoring the evaporation (condensation) processes and

the effect of the dynamic characteristics of the gas on the motion
of the liquid, the dynamic condition at the film-gas interface can
be written as

D~n ¼ rðTÞ
R
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where R is the radius of the curvature of the free surface f(t,x), r is
the surface tension gradient along the surface and D is the stress
tensor:
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In this work, we use the method based on the reduction of the solu-
tion to the boundary, where the balance relations (4) are specified.
The implementation of this method is similar to the well-known
procedure of reducing the solution to the boundary for an ideal fluid
[12,13]. However, there are a number of significant differences
related to the viscosity of the liquid.

Let us write kinematic condition

ft ¼ v � fxu ð5Þ

and two consequences from the dynamic condition (4).
The condition of continuity of the tangent stress vector
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the condition of continuity of the normal stress vector
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Using kinematic condition (5) and Eq. (2), we can reduce the
condition of continuity of the tangent stress (6) to the form
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which can be used both as the modified condition of continuity of
the tangent stress and the formula for definition of the vorticity
on the free surface.

The condition (7) can be transformed to the form
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Now, we project the Navier–Stokes vector equation written in the
natural variables, i.e. the velocity ~v and the pressure P

Nomenclature

t time
x, y coordinates
u, v longitudinal and transverse velocity components
vs, vn tangent and normal velocities of points lying on

film free surface f(t,x)
D stress tensor
P pressure
~s; ~n tangent and normal vectors
d width of thermal beam
h/h0 dimensionless film thickness
h0 length scale
v0 = m/h0 velocity scale
P0 ¼ qv2

0 pressure scale
g0 gravity scale

Dimensionless parameters
Pr = m/a Prandtl number
a thermal diffusivity
Ca = qv0m/r0 capillary number
Mn = rTdT/qv0m Marangoni number
G ¼ g0h0=v2

0 Galileo number
Cr = rTdT/r0 crispation number

Greek symbols
w stream function
x vorticity
h temperature
m kinematic viscosity
q density

Fig. 1. Sketch showing the effect of the concentrated thermal load on the free
surface of the film (1) lying on a deep liquid (2). Here, d is the width of heat beam, h0

is the initial film thickness.
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