Contents lists available at ScienceDirect

Advanced Powder Technology

journal homepage: www.elsevier.com/locate/apt

29

30

31

32

34

35

36

37

38

39

40

41 42 43

65

66

67

68

69

70

71

72

73

75

81

82

83

84

85

86

87

Original Research Paper

Enhanced antibacterial activity and mechanism studies of Ag/Bi₂O₃ nanocomposites

Qiong Liu¹, Ju Li¹, Xin Zhong, Zan Dai, Zhong Lu, Hao Yang, Rong Chen^{*}

School of Chemistry and Environmental Engineering and Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073, PR China

ARTICLE INFO

Article history:

Received 10 April 2018

18 Received in revised form 9 May 2018 19

Accepted 11 May 2018

Available online xxxx

Keywords:

22 Ag/Bi₂O₃

17

20

21

44 45

46

47

48

49 50

51

52

53

54 55

56

57

58

59 60

61

62

63

64

Nanocomposites

24 Drug-resistance

25 Antibacterial activity 26

Mechanism

ABSTRACT

In this work, sphere-like Ag/Bi₂O₃ nanocomposites with the average size of ca. 170 nm were successfully synthesized by simple deposition-precipitation method. The antibacterial activities of as-prepared Ag/ Bi₂O₃ nanocomposites were evaluated by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and colony counting methods. It was found that Ag/Bi₂O₃ nanocomposites displayed greatly improved antibacterial ability against common pathogenic Gram-positive and Gram-negative bacteria in comparison with single-component Bi₂O₃ nanospheres. More importantly, Ag/Bi₂O₃ nanocomposites exhibited remarkably outstanding antibacterial activities against clinical drug-resistant bacteria. The antibacterial activity of Ag/Bi₂O₃ nanocomposite increased with the increase of Ag content and 15 wt % Ag/Bi₂O₃ nanocomposites showed the highest antibacterial activity. Furthermore, a plausible antibacterial mechanism of Ag/Bi₂O₃ nanocomposite was proposed. It was believed that the enhanced generation of H₂O₂ could lead to the membrane leakage of cytosol and the inactivation of respiratory chain dehydrogenaes, which was possibly responsible for the enhanced antibacterial activities of nanocomposites. © 2018 Published by Elsevier B.V. on behalf of Society of Powder Technology Japan.

1. Introduction

The inappropriate use of antibiotics often makes strains of bacteria to gain resistance for many common antibiotics, leading to numerous negative effects upon medicine and society [1,2]. Drug-resistant bacterial infections could result in higher dosages of drugs, addition of treatments with higher toxicity, longer hospital stays, and increased mortality [3,4]. It impelled researchers to develop new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. Among them, nanosized inorganic antibacterial agents have gained increased interest over the past decade due to their increased surface area, smaller particle size and enhanced antibacterial activities [5,6]. More importantly, unlike commonly antibiotics, these nanomaterials could affect bacteria growth through multiple action pathways, which made microbes difficult to acquire resistance toward these nanoparticles [6,7].

It is well known that Ag nanoparticles (AgNPs) exhibited excellent antibacterial activity towards various microorganisms [8–11]. However, the property of easy aggregation and high cytotoxicity

greatly limited its practiced application [12-15]. Therefore, a series

ductors surface and generate more reactive oxygen species (ROS), thus resulting in the enhancement of photocatalytic and antibacterial activity [19,20]. In recent years, bismuth-related nanomaterial was found to present efficient bacteria growth inhibition performance [20-23]. Particularly, bismuth oxide (Bi₂O₃) display remarkable antibacterial activity and has low cytotoxicity [24-26]. Furthermore, as an important p-type semiconductor, Bi₂O₃ has been extensively applied in photovoltaic cells, optical coating, gas sensing, fuel cells and photocatalysis [27,28]. It was believed that bismuth oxide could act as an ideal candidate to composited with Ag nanoparticles to improve the antibacterial activity of nanocomposites, as well as lower its cytotoxicity. In this work, spherical Ag/ Bi₂O₃ nanocomposites with different Ag content were prepared, and their antibacterial activities against commonly pathogenic bacteria and clinical drug-resistant bacteria were evaluated for the first time. Moreover, to understand the antibacterial behavior of the nanocomposites, the changes of bacterial morphology, leakage of outer membrane, activity of respiratory chain dehydroge-

nase and lipid peroxidation of the bacteria after being treated

with Ag/Bi₂O₃ nanocomposites were investigated. The in vitro

of Ag/semiconductor nanocomposites, including Ag/TiO2, Ag/SiO2

and Ag/ZnO have been developed to overcome these drawbacks

[16–18]. It was found that the loading of AgNPs on semiconductors

could facilitate the separation of charge with holes on the semicon-

https://doi.org/10.1016/j.apt.2018.05.015

0921-8831/© 2018 Published by Elsevier B.V. on behalf of Society of Powder Technology Japan.

^{*} Corresponding author.

E-mail address: rchenhku@wit.edu.cn (R. Chen).

¹ These authors contributed equally to this work.

ว

89

90

91

92

93

94

95

96

97

98

99

cytotoxicity of Ag/Bi₂O₃ nanocomposites towards HEK293 cell was also evaluated.

were analytical grade and used directly without further purification.

100

101

102

103

104

105

106

107

108

109

110

111

112

2. Materials and methods

2.1. Materials

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 2-thiobarbituric acid (TBA), iodonitrotetrazolium chloride (INT) and trichloroacetic acid (TCA) were purchased from Aladdin (China). 3, 5-dinitrosalicylic acid, glutaraldehyde and coomassie blue were obtained from Sinopharm Chemical Reagent Co. (China). Silver nitrate, amoxicillin and piperacillin were purchased from Sigma-Aldrich Trading Co., Ltd (Germany). All the reagents

2.2. 2Bacteria and cell strains

The strains of *S. aureus* (ATCC 9118) and *S. typhimurium* (CCTCC AB 94010) were supplied by Hua zhong Normal University. The strains of *B. subtilis* (CCTCC AB 90008), *E. coli* (CCTCC AB 93154), *P. aeruginosa* (CCTCC AB 93066) and *P. vulgaris* (CCTCC AB 91103) were supplied by China Center for Type Culture Collection. The clinical strains of methicillin-resistant *S. aureus* (MRSA), drugresistant *P. aeruginosa* (DRPA) and drug-resistant *E. coli* (DREC) were supplied by Wuhan Third Hospital. Luria-Bertani (LB) medium was used in growing and maintaining all the bacteria. The human embryonic kidney cell line (HEK 293) was supplied by

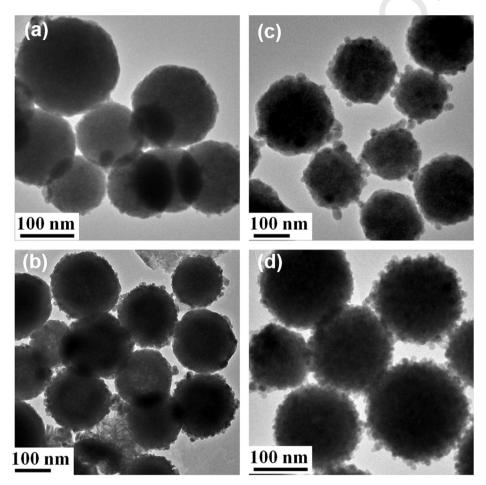


Fig. 1. TEM images of the as-synthesized ABNPs products: (a) ABNP-2.5, (b) ABNP-5, (c) ABNP-10 and (d) ABNP-15.

Table 1The MIC and MBC values of BNPs, ABNPs and AgNPs against the bacteria.

	MIC (μg/mL)						MBC (μg/mL)					
	BNPs	ABNP -2.5	ABNP -5	ABNP -10	ABNP -15	ANPs	BNPs	ABNP -2.5	ABNP -5	ABNP -10	ABNP -15	ANPs
S. aureus	4	4	4	2	4	8	8	8	8	8	8	16
B. subtilis	>1000	220	180	140	80	4	>1000	260	220	160	100	8
E. coli	>1000	320	140	80	60	16	>1000	400	180	100	60	16
S. typhimurium	>1000	360	160	80	60	16	>1000	512	256	128	70	16
P. aeruginosa	>1000	550	250	150	70	8	>1000	600	350	200	90	16
P. vulgaris	>1000	200	128	64	20	8	>1000	250	160	100	40	16

Download English Version:

https://daneshyari.com/en/article/6577091

Download Persian Version:

https://daneshyari.com/article/6577091

<u>Daneshyari.com</u>