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a b s t r a c t

The stability of buoyancy-driven parallel shear flow of a couple stress fluid confined between vertical
plates is investigated by performing a classical linear stability analysis. The plates are maintained at con-
stant but different temperatures. A modified Orr–Sommerfeld equation is derived and solved numerically
using the Galerkin method with wave speed as the eigenvalue. The critical Grashof number Gc; critical
wave number ac and critical wave speed cc are computed for wide ranges of couple stress parameter
Kc and the Prandtl number Pr. Based on these parameters, the stability characteristics of the system
are discussed in detail. The value of Prandtl number, at which the transition from stationary to travel-
ling-wave mode takes place, increases with increasing Kc. The couple stress parameter shows destabil-
ising effect on the convective flow against stationary mode, while it exhibits a dual behaviour if the
instability is via travelling-wave mode. The streamlines and isotherms presented demonstrate the devel-
opment of complex dynamics at the critical state.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Buoyancy driven flows continued to receive the attention of
researchers in both heat transfer and fluid mechanics. In recent
years important industrial problems in which natural convection
dominates are of major focus for analysts and experimentalists.
The study of fluid motions and transport processes by buoyancy
have been generally motivated by the important applications such
as nuclear reactor, cooling of electronic equipments, materials pro-
cessing such as solidification phenomenon, atmospheric and oce-
anic circulations, or in air currents rising from a cooling object,
crystal growth processes, and other natural convection processes
in the natural calamity (spread of fire). Cooling of electronic com-
ponents by natural convection is most preferable as it is highly reli-
able and avoids additional power consumption to induce the flow
as in the case of forced convection. The recognition of high free
convection heat transfer rates in atomic reactors, electrical trans-
formers and other engineering applications prompted many to
understand and study the stability of natural convection. The main
interest in the study of stability of natural convection in a fluid
layer is to know when and how laminar flow breaks down, its sub-
sequent development and its eventual transition to turbulence.

The stability of natural convection of a Newtonian viscous fluid
which is confined between two parallel vertical plates maintained
at constant and different temperatures provides one of the sim-
plest cases of an interaction between buoyancy and shearing forces
and has been investigated analytically, numerically and experi-
mentally [1–9]. Instability of the base flow in such a vertical fluid
layer occurs when the Grashof number becomes greater than a
certain critical value. The most interesting observation is that the
type of instability is determined by the magnitude of the Prandtl
number Pr. For values of Pr < 12.7, the parallel flow undergoes a
transition to a stationary multicell flow pattern when the Grashof
number exceeds a critical value. This transition has been observed
experimentally by Vest and Arpaci [6]. The critical disturbance
modes are found to be travelling waves when Pr > 12.7.

Majority of the studies on the stability of natural convection in a
vertical fluid layer are mainly concerned with Newtonian fluids
which have a linear relationship between the shear stress and
shear rate. However, fluid dynamical systems encountered in many
practical problems cited above exhibit non-Newtonian behaviour.
Therefore, studying the stability of natural convection considering
non-Newtonian effects are quite desirable. Unlike Newtonian flu-
ids, there are different kinds of non-Newtonian fluids and obvi-
ously they do not lend themselves to a unified treatment. In
recent years, polar fluids – a class of non-Newtonian fluids have
received a wider attention. These fluids deform and produce a spin
field due to the microrotation of suspended particles. As far as
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these types of non-Newtonian fluids are concerned, there are two
important theories proposed by Eringen [10] and Stokes [11] and
these are, respectively, referred to as micropolar fluid theory and
couple stress fluid theory. The micropolar fluids take care of local
effects arising from microstructure and as well as the intrinsic
motions of microfluidics. The spin field due to microrotation of
freely suspended particles set up an anti-symmetric stress, known
as couple stress, and thus forming couple stress fluid. The couple-
stress fluid theory represents the simplest generalisation of the
classical viscous fluid theory that allows for polar effects and
whose microstructure is mechanically significant in fluids. More-
over, the couple stress fluid model is one of the numerous models
that were proposed to describe response characteristics of non-
Newtonian fluids. The constitutive equations in these fluid mod-
els can be very complex and involve a number of parameters, also
the resulting flow equations lead to boundary value problems in
which the order of differential equations is higher than the
Navier–Stokes equations and are given by Stokes [11] which
allows the sustenance of couple stresses in addition to usual
stresses. This fluid theory shows all the important features and
effects of couple stresses and results in equations that are similar
to Navier–Stokes equations. Couple-stress fluids have applications
in a number of processes that occur in industry such as the extru-
sion of polymer fluids, solidification of liquid crystals, cooling of
metallic plates in a bath, nuclear slurries, exotic lubricants and
colloidal fluids, liquids containing long-chain molecules as poly-
meric suspensions, and lubrication, electro-rheological fluids to
mention a few.

Work on the stability of natural convection in a vertical fluid
layer subsequently extended to non-Newtonian fluids is concerned
only with viscoelastic fluids ([12,13]). Jain and Stokes [14] studied
the effect of couple stresses in fluids on the hydrodynamic stability
of plane Poiseuille flow, while effect of couple stresses on thermal
convective instability is analyzed by many researchers ([15–19]).
Rudraiah et al. [20] investigated electrohydrodynamic stability of
couple stress fluid flow in a horizontal channel occupied by a por-
ous medium using energy method.

Nonetheless, the effect of couple stresses on the stability of
natural convection in a vertical fluid layer has not received
any attention in the literature despite its relevance and impor-
tance in many practical problems cited above. The intent of
the present paper is to investigate this problem in which the
vertical plates are maintained at constant but different tempera-
tures. Modified Orr–Sommerfeld equations are derived and the
resulting eigenvalue problem is solved numerically using the
Galerkin method.

2. Mathematical formulation

The geometric arrangement of the problem is illustrated sche-
matically in Fig. 1. We consider an incompressible couple stress
fluid confined between two parallel vertical plates at x1 = ±h. The
left surface is maintained at fixed temperature T1, whereas the
plate at x1 = h is maintained at fixed temperature T2 (>T1). A Carte-
sian coordinate system (x1, x2, x3) is chosen with the origin in the
middle of the vertical fluid layer, where the x1-axis is taken per-
pendicular to the plates and the x3-axis is vertically upwards,
opposite in the direction to the gravity. Under the Oberbeck–Bous-
sinesq approximation (since the temperature difference between
the vertical plates is assumed to be small, the density is treated
as a constant everywhere in the governing equation except in the
gravitational term), we have

ui;i ¼ 0 ð1Þ

q ¼ q0 1� a T � T0ð Þf g ð2Þ

where ui is the velocity vector, T is the temperature, q is the fluid
density, a is the thermal expansion coefficient, q0 is the density at
reference temperature T = T0 (at the middle of the channel).

The equation of motion for couple stress fluids are based on the
constitutive equations which are given by Stokes [11]. The stress
tensor si j consists of symmetric and anti-symmetric parts and

Nomenclature

a vertical wave number
c wave speed
cr phase velocity
ci growth rate
D = d/dx1 differential operator
~g acceleration due to gravity
G = agbh4/m2 Grashof number
h thickness of the dielectric fluid layer
p pressure
Pr = m/j Prandtl number
~q ¼ ðu1;u2;u3Þ velocity vector
t time
T temperature
T1 temperature of the left boundary
T2 temperature of the right boundary

Wb basic velocity
x1; x2; x3ð Þ Cartesian co-ordinates

Greek symbols
a thermal expansion coefficient
g couple stress viscosity
j thermal diffusivity
Kc ¼ h

ffiffiffiffiffiffiffiffiffi
l=g

p
couple stress parameter

l fluid viscosity
m( = l/q0) kinematic viscosity
w x1; x3; tð Þ stream function
W amplitude of vertical component of perturbed velocity
q fluid density
q0 reference density at T0

h amplitude of perturbed temperature

Fig. 1. Physical configuration.
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