Advanced Powder Technology xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Advanced Powder Technology

journal homepage: www.elsevier.com/locate/apt

31

32

34

35

36

37

38

39

40

41 42 43

63

64

65

66

67

68

69

70 71

72

73

74

75

77

83

85

Original Research Paper

TiO₂/void/porous Al₂O₃ shell embedded in polyvinylidene fluoride film for cleaning wastewater

Yuqing Zhang a,*, Yanhua Hu a, Yunge Zhang a, Shaomin Liu b

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China

ARTICLE INFO

Article history:

Received 26 September 2017

18 Received in revised form 14 March 2018

Accepted 19 March 2018

Available online xxxx

Keywords:

22 TiO₂

21

44 45

46

47

48

49

50 51

52

53

54

55

56 57

58

59 60

61 62

Porous Al₂O₃ shell 24

PVDF film

25 Oily wastewater cleaning 26

HPAM adsorption

ABSTRACT

In order to selectively adsorb hydrolyzed polyacryamide (HPAM) and remove oil from oily wastewater, TiO₂/void/porous Al₂O₃ shell particles (TVAs) were designed and prepared though hydrolysis and calcination; subsequently, the TVAs were embedded into polyvinylidene fluoride (PVDF) to prepare composite films (TVAP films). As polymeric supports, TVAP films were employed to immobilize TiO2 powder. TVAs were characterized using SEM, TEM, FT-IR, BET while TVAP films were characterized by SEM. The results indicate that the particle size of TVAs is mainly distributed between 700 and 800 nm, coreshell structure has been successfully built. The removal rates of TVAP films prepared under the optimum synthesis conditions for oil and HPAM reach 69.70% and 60.20% respectively, performing attractive properties of mass transfer and adsorption. Therefore, TVAP films are desirable as suitable materials to clean oily wastewater.

© 2018 Published by Elsevier B.V. on behalf of The Society of Powder Technology Japan. All rights reserved.

ticular, HPAM molecules with unique linear structure can easily

wrap with oil droplets of wastewater through the channels of

membranes, therefore, membrane technology cannot be employed

to efficiently clean oily wastewater containing HPAM [4]. In other

to solve the above mentioned problems, much attention has been

focused on adsorption method, which is considered as a particu-

larly attractive and effective process for removing contaminants

from wastewater. The structure, specific surface area, and selectiv-

ity of an adsorbent are the decisive factors for the adsorption pro-

cess. Generally, the adsorbents with the larger specific surface area

and higher selectivity perform the attractive removal efficiency for

contaminants. γ-Al₂O₃, as a low-temperature metastable poly-

morph of transition alumina with abundant surface hydroxyls,

ity for HPAM. After treatment by porous alumina, the content of

HPAM and suspended solids in the filtrate have been cleaned to

1. Introduction

Nowadays with the environment pollution and water resources crisis becoming increasingly serious, wastewater treatment has received growing attention as a promising process for water purification. Wastewater mainly comes from industrial and municipal discharge. Especially, cleaning industrial oily wastewater is very difficult. So far, lots of efforts have been made to clean oily wastewater. Conventional methods such as air flotation, gravity setting, coagulation precipitation and sand filter [1-3] cannot sufficiently satisfy the requirements of wastewater discharge and recycle standard because of their poor continuous operation performance and low oil removal efficiency. Thus it is highly desirable to develop a sustainable and efficient method to clean oily wastewater.

Oily wastewater with many pollutants such as flocculants (HPAM), harming not only the aquatic environment but also human health, is hard to be cleaned. The existence of HPAM leads to the increase of wastewater viscosity and emulsification. In par-

has been widely applied in the purification of water owing to its large specific surface area and strong electrostatic adsorption capacity [5–7], especially it is very effective to remove HPAM in wastewater. For instance, Zhang et al. prepared Al₂O₃-coated diatomite materials via the hydrolysis reaction and successfully utilized them to clean wastewater containing HPAM [8]. This is because porous Al₂O₃ materials can attract with HPAM via electro-static interaction (isoelectric point is about 9, showing positive zeta potential values at pH 7), performing selective adsorption capabil-

E-mail address: zhangyuqing@tju.edu.cn (Y. Zhang).

https://doi.org/10.1016/j.apt.2018.03.023

0921-8831/© 2018 Published by Elsevier B.V. on behalf of The Society of Powder Technology Japan. All rights reserved.

Please cite this article in press as: Y. Zhang et al., TiO₂/void/porous Al₂O₃ shell embedded in polyvinylidene fluoride film for cleaning wastewater, Advanced Powder Technology (2018), https://doi.org/10.1016/j.apt.2018.03.023

^b Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

Abbreviations: PVDF, polyvinylidene fluoride; HPAM, hydrolyzed polyacryamide; TVAs, TiO2/void/porous Al2O3 shell particles; TVAP films, TVAs/PVDF composite films.

^{*} Corresponding author.

87

140

141

142

143

144

145

meet the recycling standard of wastewater. However, Al₂O₃-coated diatomite cannot degrade or clean other pollutants in wastewater, such as organic macromolecules and microbes. Therefore, researching new materials with multi-functions for cleaning wastewater from industrial discharge has become an important

Titanium dioxide (TiO₂) is considered to be a promising photocatalyst for cleaning water due to its excellent chemical stability and photocatalytic activity [9–11], which can effectively degrade organic pollutants (i.e., hydrocarbon and soluble oil) and microbes [12]. However, the separation and recovery of TiO₂ powder from the water after treatment is still a problem that cannot be ignored [13]. In order to address the problem, efforts have been attempted to immobilize TiO₂ nanoparticles on inorganic supports [14,15] or organic carriers [16,17], especially on polymeric supports [18,19]. Compared to inorganic supports, polymeric materials possess high chemical inertness and mechanical stability, which can avoid chemical modification when the TiO₂ particles were embedded into the polymer membranes [20]. But there is a problem that polymeric supports may be photodegraded by the superior photoactivity of TiO₂ nanoparticles. A representative approach to overcome the degradation of polymeric material is fabricating core/ shell structure by encapsulating TiO₂ particles into inert inorganic substances [21,22]. In order to recycle TiO₂ particles and further enlarge pore size of the shell, Zhang et al. [23] selectively etched the interior of the silica spheres by a "surface-protected etching" strategy, creating openings on silica shells. The results show that these openings allow the dissolved chemical species to reach the embedded catalytic particles which indeed enhanced mass transfer. Besides, porous Zr-doped SiO₂ shell/TiO₂ core particles with expanded channels (EC-ZSTs) [24] were prepared and embedded into PVDF to prepare EC-ZSTP membranes for photodegrading methyl orange solution and oil in wastewater containing oil. The results indicate the expanded channels of EC-ZSTs can enhance the mass and light transfer, ensuring better photocatalytic performance of EC-ZSTs and EC-ZSTP membranes. Although numerous studies on the preparation of core/shell structure have been reported, how to remove HPAM in the oily wastewater using TiO₂ functional materials is still not investigated. Based on above mentioned investigations and analysis, TiO₂/void/porous Al₂O₃ shell particles (TVAs) built by the synergetic effect of double template agents (CTAB and PEG-400) and hydrolysis of aluminum nitrate in basic solution will show the properties of selectively adsorbing HPAM and removing oil from oily wastewater. In the core/shell structure, the porous Al₂O₃ shell not only effectively protects the polymer carrier from the damage and degradation of the TiO₂ photocatalyst, but also promotes the mass transfer of organic pollutants and ensures a large specific surface area of TVAs. When the TVAs are embedded into PVDF to form TVAP films, the photocatalytic performance and adsorption capacity for HPAM of TVAP films can be expected.

In this paper, in order to selectively adsorb HPAM and remove oil from oily wastewater based on recycling TiO₂ particles, TVAs are fabricated by the synergetic effect of double template agents (CTAB and PEG-400) and hydrolysis of aluminum nitrate in basic solution, and then embedded into PVDF to form films immobilizing TiO₂. The preparation conditions of TVAP films are optimized and the photocatalytic activity of TVAP films is researched and analyzed.

2. Experimental

2.1. Materials and reagents

All chemicals were used as received without further treatment. Tetrabutyl titanate (TBT, AR grade, 98.0%) was purchased from Tianjin Fuchen Chemical Reagents Company. Polyethylene glycol with average MW 400 Da (PEG-400, AR grade, ethylene glycol < 0.18%) was obtained from TianjinBodi Chemical Holding Co., Ltd. Oleic acid (C₁₈H₃₄O₂, OA, AR grade), absolute ethanol (CH₃CH₂OH, AR grade, 99.8%), aluminum nitrate ((Al(NO₃)₃·9H₂O, AR grade, 99.0%), cetyltrimethylammonium bromide (CTAB, AR grade, 99.0%), ammonium bicarbonate (NH₄HCO₃, AR grade, NH₃ \geq 21.0%) and acetone (CH₃COCH₃, AR grade, 99.5%) were provided by Tianjin Guangfu Fine Chemicals Co., Ltd. Dimethyl carbonate (DMC, AR grade, 99.0%) was received from Tianjin Chemical Reagent Research Institute. PVDF (1015) was supplied by Solvay Co., Ltd (USA). N,N-dimethylacetamide (DMAC, AR grade, 99.5%) were obtained from Tianjin Damao Chemical Reagent Factory.

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

2.2. Synthesis of TVAs

The preparation process of TVAs is schematically shown in Fig. 1. Based on our previous work [8], the TVAs were prepared by hydrolysis, calcination, and the detailed procedures are as follows.

Preparation of TiO₂/OA composite particles: The synthesis approach of TiO₂/OA composite particles is similar to literature [24]. First, NaCl aqueous solution was added dropwise into the mixture of absolute ethanol and TBT, and then centrifugated, dried in the oven at 60 °C for 6 h and calcined at 500 °C for 2 h to obtain anatase TiO₂. Second, TiO₂ particles were added into the modifying agent, which consists of oleic acid, absolute ethanol and deionized water (volume ratio 1:2:2), and then centrifuged and dried to obtain the TiO₂/OA composite particles.

Preparation of TVAs: 60 mL of deionized water and a certain amount of CTAB and PEG-400 were mixed and stirred at 40 °C for 30 min. Then 0.2 g of TiO₂/OA composite particles was added to the mixture under magnetic stirring for 30 min. Next, Al(NO₃)₃-·9H₂O was added to the mixture with 10 min stirring, followed by adding different volume ratios between NH₄HCO₃ solution of 1 mol L^{-1} and NH₃·H₂O solution of 0.1 mol L^{-1} to adjust pH value to 9.0. The reaction system was kept under stirring for 10 h, and then aged at 25 °C for 20 h. Afterwards, the as-obtained precursor particles were centrifuged and washed by deionized water, followed by drying at 60 °C for 6 h and calcination at 500 °C for 2 h to obtain TVAs.

2.3. Preparation of TVAP films

The TVAP films were prepared via appropriate phase inversion technology [25]. Firstly, 0.4 g of TVAs was dispersed into the mixture of DMAC and acetone at 55 °C under ultrasonic agitation for 60 min. Next, 2.885 g of PVDF was dissolved into the mixture under ultrasonic agitation for 2 h. Then, 8.4 mL of DMC was added into the mixture under continuously ultrasonic agitation for 30 min to form a transparent sol. Finally, the as-obtained solution was cast onto a smooth and clean glass plate with the desired thickness controlled by a doctor blade. The solvents were evaporated under ambient condition for 10 min. The films were kept in the vacuum drying oven at 90 °C for 2 h.

PVDF films were obtained in the same procedure as described above but without the presence of TVAs.

Download English Version:

https://daneshyari.com/en/article/6577163

Download Persian Version:

https://daneshyari.com/article/6577163

<u>Daneshyari.com</u>