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29In this research, a universal framework for automated calibration of microscopic properties of modeled
30granular materials is proposed. The proposed framework aims at industrial scale applications, where
31optimization of the computational time step is important. It can be generally applied to all types of
32DEM simulation setups. It consists of three phases: data base generation, parameter optimization, and
33verification. In the first phase, DEM simulations are carried out on a multi-dimensional grid of sampled
34input parameter values to generate a database of macroscopic material responses. The database and
35experimental data are then used to interpolate the objective functions with respect to an arbitrary set
36of parameters. In the second phase, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used
37to solve the calibration multi-objective optimization problem. In the third phase, the DEM simulations
38using the results of the calibrated input parameters are carried out to calculate the macroscopic
39responses that are then compared with experimental measurements for verification and validation.
40The proposed calibration framework has been successfully demonstrated by a case study with two-
41objective optimization for the model accuracy and the simulation time. Based on the concept of Pareto
42dominance, the trade-off between these two conflicting objectives becomes apparent. Through verifica-
43tion and validation steps, the approach has proven to be successful for accurate calibration of material
44parameters with the optimal simulation time.
45� 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder
46Technology Japan. All rights reserved.
47
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50 1. Introduction

51 The discrete element method (DEM) [1] has become a widely
52 accepted numerical technique for computing the behavior of gran-
53 ular materials. However, a major barrier to effective uses of DEM is
54 selecting appropriate input parameters so that simulations can
55 accurately reproduce the behavior of real systems. Furthermore,
56 efficient parameter sets to reduce computational cost are required
57 for industrial applications. Some microscopic input parameters can
58 be determined directly from experiments, while others can be
59 obtained only or more practically by calibration of macroscopic
60 responses [2–14]. Calibration is traditionally carried out by ‘‘trial
61 and error” in which an iterative process of adjusting unknown
62 input parameters until the DEM simulated results match the given
63 measured bulk behavior. ‘‘Trial and error” is a purely forward,
64 primitive methodology and is hence limited by the parametric

65multi-dimensionality and computational expense of performing
66DEM simulations.
67From amathematical point of view, DEM calibration is classified
68as an inverse problem [15,16]. The process aims at searching for
69input parameters such that the model response best matches
70experimental data. An inverse procedure of calibration can be
71divided into two steps. In the first step, DEM simulations are car-
72ried out to construct an objective function that indicates the dis-
73crepancy between the solution profile of the model and the
74experimentally measured profile. To reduce the number of simula-
75tions required, approaches such as design of experiment/simula-
76tion [17–19], artificial neural network training [20], and Latin
77hypercube sampling and Kriging [21], have been used. In the sec-
78ond step, optimization is used to search for the optimal parameter
79set that minimizes the objective function. Several different opti-
80mization methods are used for DEM calibration, e.g., Levenberg-
81Marquardt residual minimization [21], Nelder-Mead simplex
82[22], weighted least squares [23], Gauss-Newton algorithm [24],
83and genetic algorithms [25]. In many practical cases, if the profile
84consists of more than one bulk property to be considered, it is for-
85mulated as a multi-objective optimization problem (MOOP). In

https://doi.org/10.1016/j.apt.2018.03.001
0921-8831/� 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

⇑ Corresponding author at: 34B-4-340, Mekelweg 2, 2628CD Delft, The Nether-
lands.

E-mail address: q.h.do@tudelft.nl (H.Q. Do).

Advanced Powder Technology xxx (2018) xxx–xxx

Contents lists available at ScienceDirect

Advanced Powder Technology

journal homepage: www.elsevier .com/locate /apt

APT 1895 No. of Pages 11, Model 5G

12 March 2018

Please cite this article in press as: H.Q. Do et al., A calibration framework for discrete element model parameters using genetic algorithms, Advanced Pow-
der Technology (2018), https://doi.org/10.1016/j.apt.2018.03.001

https://doi.org/10.1016/j.apt.2018.03.001
mailto:q.h.do@tudelft.nl
https://doi.org/10.1016/j.apt.2018.03.001
http://www.sciencedirect.com/science/journal/09218831
http://www.elsevier.com/locate/apt
https://doi.org/10.1016/j.apt.2018.03.001


86 earlier work on DEM calibration [17,21–24], MOOPs have been
87 solved using single-objective optimization. In that work, MOOP is
88 converted to a single objective function, with different weight fac-
89 tors assigned to the corresponding objectives. However, the draw-
90 backs of using single-objective optimization techniques to solve
91 MOOP are evident, not only because the solution obtained cannot
92 capture the tradeoff between the different objectives, but also
93 because the determination of the weight factors tends to substan-
94 tially influence the solution. Moreover, gradient-based search tech-
95 niques [21–24] may converge to a local optimum.
96 For more than four decades, multi-objective evolutionary
97 genetic algorithms (MOEAs) [26–29] have been proven to be an
98 efficient method to overcome the foregoing problems. In this
99 paper, a DEM calibration framework is presented. In the frame-

100 work, after choosing the calibration setup, an optimization process
101 based on MOEAs is carried out. The framework offers novel aspects
102 that have not been addressed yet in the literature on DEM calibra-
103 tion. The first novelty is the ability to handle any number of objec-
104 tive functions with a unified formulation and accommodate the
105 discrete nature of the design parameters. Secondly, since MOEA
106 is based on the notion of Pareto dominance, visualizations of trade-
107 offs among conflicting objectives provide essential information for
108 decision making during the optimization process. Thirdly, evolu-
109 tionary algorithms search for a broad portion of the decision space,
110 and they are hence more likely to reach a set of solutions close to a
111 global optimum.
112 The paper is structured as follows: Section 2 presents the novel
113 DEM calibration framework based on MOEAs. Section 3 describes
114 the case study for calibration composed of three DEM simulation
115 setups that replicate numerically the experiments. A two-
116 objective optimization problem of calibration, in which both the
117 model error and simulation time are simultaneously minimized,
118 is defined. In Section 4, the numerical calibration results, verifica-
119 tion, and validation, are discussed and evaluated. Finally, Section 5
120 gives conclusions on the performance of the calibration
121 framework.

122 2. Methods

123 The flowchart of the calibration approach consists of three
124 phases, as illustrated in Fig. 1. In the first phase, calibration setups
125 are chosen. The calibration setups should reflect the important
126 physics aspects of final target problems, i.e., material behaviors in
127 industrial applications. The calibration setups should also be large
128 enough in relation to particle dimensions to demonstrate realisti-
129 cally material behaviors as on a large-scale (industrial) case. In
130 addition, contact force models should be chosen that properly
131 reflects the nature of the material behaviors. DEM simulations
132 are then carried out on a user-defined, multi-dimensional grid of
133 sampled values of the input parameters being calibrated. The sim-
134 ulated macroscopic outputs and their corresponding experimental
135 data are used as the database to interpolate the objective functions
136 with respect to an arbitrary set of parameters. In the second phase,
137 the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [30],
138 one of MOEAs, is used to solve the multi-objective optimization
139 problem. In the third phase, DEM simulations using the calibrated
140 input parameters obtained from the optimization are carried out to
141 calculate bulk properties that are then compared with experimen-
142 tal measurements for verification.

143 2.1. Simple genetic algorithm

144 Genetic algorithms (GAs) are search and optimization methods
145 inspired by Darwin’s theory of evolution of natural selection and
146 genetics. In a simple genetic algorithm [31], an initial population

147of candidate solutions evolves through generations (iterations)
148towards individuals with better fitness by applying genetic opera-
149tors such as selection, crossover, and mutation. The fitness is mea-
150sured by an objective function of the optimization problem being
151solved. In each iteration, the better fit individuals are stochastically
152selected from the current population for breeding to create a new
153generation. The population is then replaced by a new generation
154and used for the next iteration of the process. The algorithm termi-
155nates when fitness values of the individuals satisfying a predefined
156criterion have been found, a predefined maximum number of gen-
157erations has been reached, or the best fitness value has reached a
158plateau such that successive iterations no longer produce any
159improvement.
160A single-objective optimization problem for a typical calibration
161is given as:
162

arg min
such that x2S

OðxÞ; ð1Þ
164164

165where: the design variable vector x ¼ ðx1; x2; . . . xnÞ| is a set of input
166parameters varying within a search space V � Rn, and intervals Si =
167[li;ui] (for i ¼ 1;2; ::; n) are the given lower and upper bounds of
168parameter xi. O is the objective function to be minimized, which
169is the fitness function of GAs and defined as the discrepancies
170between DEM model results and experimental measurement data.
171To represent input parameters by means of a binary alphabet, a
172function codi : Si ! f0 _ 1g,has to be specified, which codes each
173parameter xi in interval Si using binary strings of length Li charac-
174ters. An input parameter set, a so called individual in GAs, is repre-
175sented by linking together the coded binary strings of all
176parameters as codðxÞ = cod1ðx1Þcod2ðx2Þ . . . codnðxnÞ.
177For example, a calibration problem involves n ¼ 2 input param-
178eters: rolling and sliding friction coefficients, x ¼ ðx1; x2Þ ¼ ðlr ;lsÞ,
179in ranges [0.1,0.5] and [0.2,0.7], respectively. If, for instance, 4 and
1805 binary bits defining ranges of 0000–1111 and 00000–11111 are
181used to encode lr and ls, respectively, the encoding functions
182cod1 and cod2 map the continuous solution space into the numer-
183ical discrete solution space. The discrete solution space consists
184of 24 � 25 ¼ 512 possible values and each value is presented by a
185string of 9 binary bits. This encoding provides a numerical preci-

186sion of 0:5�0:1
24�1

� 0:7�0:2
25�1

¼ 0:02666� 0:01613. A parameter set

187ðlr ;lsÞ with real values, e.g., (0.2862, 0.5387), can be encoded by
188an individual as (011110101), in which the first four digits are used
189for lr and the last five digits for ls. At the beginning of the GA pro-
190cess, an initial population P with jPj individuals, is randomly
191generated.
192In the next phase of GAs, selection techniques are used to
193choose the new population of individuals for the next generation.
194Selection is an important part of GAs since it affects significantly
195their convergence. The basic strategy follows the rule: the better
196fit an individual, the larger the probability of its survival and mat-
197ing. In this study, the most widely used selection type, the so-
198called binary tournament selection [31], is applied. It assumes that
199the probability of selection for crossover is proportional to the fit-
200ness of an individual.
201The crossover operator mimics the natural process in biology
202whereby genes from two parents meet to produce new offsprings
203that are a mix of the parent’s genes. Crossover is vitally important
204in introducing new possible solutions by exploring new domains of
205the search space. Individuals, as a result of the selection process,
206are randomly selected and mated in pairs using a single-point
207crossover [31].
208The mutation operator is used to promote genetic diversity
209from the current population to the next, aiming at introducing
210new genetic information in the search. Analogous to biological
211mutation, this operator alters one or more gene values in randomly
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