Advanced Powder Technology xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Advanced Powder Technology

journal homepage: www.elsevier.com/locate/apt

27

29

30

31

32

33

34

35

36

37

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

82

83

85

86

87

88

90

91

reserved.

Original Research Paper

ARTICLE INFO

Received in revised form 5 November 2017

Received 4 August 2017

Available online xxxx

Accepted 10 November 2017

Article history:

Keywords:

Ag/AgVO₃

Visible light

One step pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/AgVO₃

Junhui Yi*, Jiaxing Song, Huimei Mo, Yupeng Yang

College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China

17 18

20 21 22

23 24

38 39

57

58

59

60

61

62

63

ABSTRACT

Ag/AgVO₃ nanorods have been obtained for the first time by one step hydrothermal method with the contribution of pyridine. The prepared sample was systematically characterized. Their photocatalytic properties were investigated by degrading acid orange II (AO-II) under visible light. Compared with pure AgVO₃, Ag/AgVO₃ nanorods showed much higher photocatalytic activity and stability. The enhanced photocatalytic activity was attributed to Ag nanoparticles (NPs) with a strong surface plasmon resonance (SPR). Further studies indicate that the photogenerated holes (h⁺) and superoxide radical anions (O₂) were major active species. Ag/AgVO₃ nanorods has a huge potential application in wastewater treatment. © 2017 Published by Elsevier B.V. on behalf of The Society of Powder Technology Japan. All rights

1. Introduction

Plasmon photocatalysis

Photocatalysis has gained increasing attention from researchers because it is an ideal technology to solve the energy shortage and environmental problems [1-3]. For the past decade or more, various semiconductors, including ZnO [4,5], TiO₂ [6,7], CuO [8,9], have been extensively studied. However, most of them had a high rate of charge carrier recombination and almost no visible light absorption. Hence, many efforts have been devoted to address these two shortcomings by doping TiO2, such as with nonmetals Ndoping [10] and self doping [11], or decorating with some narrow-band-gap semiconductors such as SnO₂-decorated ZnSn (OH)₆ [12], Bi₂Ti₂O₇/TiO₂ [13]. To some extent, their photocatalytic properties have been improved by these methods. Nevertheless, their unsatisfactory activities and low efficiencies in the utilization of solar irradiation concentrated in visible light regions is difficult to meet their practical applications. Therefore, it is necessary to develop new and highly deficient visible light-active photocatalysts and effectively promote the separation of photogenerated electrons and holes. Up to now, a series of Ag-based photocatalysts have presented great abilities to photodegrade the organic pollutants under visible light irradiation. Among these new photocatalysts, silver vanadium oxide (SVO) (AgVO₃, Ag₂V₄O₁₁, Ag₃VO₄, etc.) have attracted enormous attention owing to their extensive application, unique hybridization of valence bands of V 3d, O 2p and Ag 4d orbits in SVOs, which could be utilized as visible-lightAgVO₃ with excellent optical absorption in the visible light region has attracted considerable attention due to its narrow band gap (ca. 2.3 eV), unique electronic structure and well crystallization. However, the catalytic activity of AgVO₃ is low due to its low capability of separating electron-hole pairs in the photocatalytic reaction. There are usually two ways to enhance its visible photocatalytic activity. One way is to design specific structures with different morphologies that lead to better performance. Among them, one-dimensional (1D) structure is expected to show higher activities owing to having a larger aspect ratio for extensive charge separation on their surfaces. Another way is to combine with plasmonic nanoparticles (NPs) made of noble metals (such as Au and Ag), which is endowed with high absorption coefficient in a broad visible spectral range due to their strong surface plasmon resonance (SPR) [18-20]. For instance, Wei [21] and coworkers have developed Ag/AgVO₃ nanoribbons plasmonic photocatalyst via in situ reduction of AgVO3 by NaBH4 at room temperature, which showed high photocatalytic activity. Malkhasian et al. [22] have reported Pt/AgVO₃ plasmonic photocatalyst via combining a hydrothermal method with photo-assisted deposition. The results reveal that Pt/AgVO₃ plasmonic photocatalyst have enhanced photocatalytic activity. Peng [23] and co-workers have prepared Ag/AgVO₃ 1D nanometer material, and the photocatalytic activity for the degradation of bisphenol A was investigated under visible light irradiation. The results showed that Ag/AgVO₃ exhibited higher photocatalytic activity than bare AgVO₃. Therefore, the construction of AgVO₃-based composite photocatalysts by

introducing noble metals with SPR is an effective means to

sensitive photocatalyst [14–17]. As a typical SVO compound,

https://doi.org/10.1016/j.apt.2017.11.018

0921-8831/© 2017 Published by Elsevier B.V. on behalf of The Society of Powder Technology Japan. All rights reserved.

^{*} Corresponding author. E-mail address: yjh0710@gdupt.edu.cn (J. Yi).

2.2. Catalysts characterization

The crystal structure were analyzed with an X-ray diffractome-

ter (XRD, D/max-IIIA, Japan) using Cu Ka as the radiation source.

The morphologies and microstructure of the prepared samples

were observed adopting field emission scanning electron micro-

scope (FE-SEM, MERLIN) and transmission electron microscope

(TEM, JEM-2200FS). The UV-visible diffuse reflectance spectra

(UV-Vis DRS) were recorded on a UV-Vis spectrometer (U3010,

Hitachi) with an integrated sphere attachment. Fluorescence emis-

sion spectra were recorded using a fluorescence spectrophotome-

ter (FL-4500, Hitachi) with an excitation wavelength at 350 nm.

The Raman spectra were recorded with a LabRAM Aramis confocal

laser Micro-Raman spectrometer equipped with an argon ion laser.

The surface chemical composition was measured by X-ray photo-

electron spectroscopy (XPS, Krato Axis Ultra DLD) with Al Ka X-

AO-II was selected as the simulated pollutant to evaluate the

photocatalytic activity of Ag/AgVO₃. The light visible source was

provided by A 300 W Xe arc lamp (PLS-SXE300, Beijing perfectlight

Co., Ltd.) equipped with an ultraviolet cutoff filter and the distance

between the liquid surface of the suspension and the light source

was set about 10 cm. The photodegradation experiments were car-

ried out with the sample powder (100 mg) suspended in AO-II aque-

ous solution (100 mL, 15 mg $\rm L^{-1}$) with constant stirring. Prior to the

irradiation, the suspensions were magnetically stirred in the dark for

30 min to establish the adsorption/desorption equilibrium. At the

given time intervals, about 5 mL of the suspension was taken for fur-

ther measurement after centrifugation. AO-II photodegradation

were analyzed at 484 with UV-vis spectrophotometer (Shimadzu

ray (hv = 1486.6 eV) at 15 kV and 150 W.

2.3. Photocatalysis process

two steps or more.

2. Experimental

2.1. Catalysts preparation

enhance their photocatalytic activity. Nevertheless, the prepara-

tion methods mentioned in the literature have been subjected to

cating 1D Ag/AgVO₃ nanorods with pyridine (Py). The pyridine

which was introduced to the synthesis system, not only works as

a coordination agent of Ag+, but also as a reductant for reducing

Ag⁺ ions to metal Ag. The as-prepared Ag/AgVO₃ catalyst was char-

acterized by scanning electron microscopy, transmission electron

microscope, X-ray diffraction, Raman spectrums, X-ray photoelec-

tron spectroscopy, and UV-Vis diffuse reflectance spectra. Photo-

catalytic activity and recycling performance were investigated for

All chemicals were analytical grade and obtained from Aladdin

Reagents Company. Ag/AgVO₃ were prepared by one step

hydrothermal method with pyridine. Typical synthesis was

described as the following. Firstly, 30 mL solution of 1.25 mmol

AgNO₃ and 3 ml pyridine were mixed together in a 100 mL

Teflon-lined. Then 30 mL equimolar amounts of NH₄VO₃ solution

was added with drop by drop to the above solution under vigorous

stirring. After ultrasonic treatment for 30 min, the autoclave was

sealed and maintained at 180 °C for 24 h, and then cooled to room

temperature naturally. The products were collected by centrifuga-

tion, and alternately washed with distilled water and absolute

ethanol several times, and finally dried in a vacuum at 70 °C in

the dark. For the sake of contrast, AgVO₃ were prepared under

the same condition except for no addition of pyridine.

degradation of AO-II under visible light irradiation.

Herein, we demonstrate one step hydrothermal method fabri-

93 94 95

96 97

100 nm

140 141 142

138 139

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Fig. 1. SEM images of (A) AgVO₃; (B) and (C) Ag/AgVO₃ with different magnification; (D) TEM images of Ag/AgVO₃; (E) HRTEM images of Ag/AgVO₃; (F) EDX elemental

0.302 nm AqVO₃(501

Please cite this article in press as: J. Yi et al., One step pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/AgVO₃, Advanced Powder Technology (2017), https://doi.org/10.1016/j.apt.2017.11.018

0.235 nm Ag(111)

Download English Version:

https://daneshyari.com/en/article/6577415

Download Persian Version:

https://daneshyari.com/article/6577415

<u>Daneshyari.com</u>