ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

One-pot synthesis of 1,2/3-triols from the allylic hydroperoxides catalyzed by zeolite-confined osmium(0) nanoclusters

Haydar Göksu^{a,c}, Diğdem Dalmizrak^a, Serdar Akbayrak^b, Mehmet Serdar Gültekin^{a,*}, Saim Özkar^b, Önder Metin^{a,*}

- ^a Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
- ^b Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
- ^c Corrosion Research Laboratory, Kaynasli Vocational College, Düzce University, 81900 Düzce, Turkey

ARTICLE INFO

Article history:
Received 3 June 2013
Received in revised form 15 June 2013
Accepted 17 June 2013
Available online 25 June 2013

Keywords: Zeolite-Y Osmium nanoclusters Reusable catalyst Hydroperoxide 1,2,3-triols

ABSTRACT

A facile, efficient and eco-friendly method for the one-pot synthesis of 1,2/3-triols from the allylic hydroperoxides were developed by using zeolite-confined osmium(0) nanoclusters as reusable catalyst and without using any co-oxidant (H_2O_2 , tBuOOH , NMO, etc.) in water/acetone (v/v = 1/4) mixture at room temperature. In this method, the oxygen atom of the allylic hydroperoxide group was transferred to the double bond of the same molecule via zeolite-confined osmium(0) nanoclusters. The method has been successfully applied to various allylic hydroperoxides and the corresponding 1,2/3-triols were obtained in high chemical yield. Moreover, a plausible mechanism was proposed for the catalytic oxidation of allylic hydroperoxide to the respective 1,2/3-triols in the presence of zeolite-Oso catalyst gathering all the results collected by testing a variety of allylic hydroperoxides in the presence of zeolite-Oso catalyst.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cyclitols comprising polyhydroxy groups are important class of compounds found in the plants. The cyclitol derivatives possess some intriguing biological activities to plants such as glycosidase inhibition [1]. The natural and synthetic cyclitol derivatives are widely used in pharmaceutical and food industries owing to their high solubility in water, antibiotic and antioxidant activities [2]. There are also several examples of using cyclitols as organic inhibitor in the corrosion [3] and electrodeposition applications [4]. Hence, the demand on the natural or synthetic cyclitol derivatives has been increasing steadily.

Of cyclitol family, the 1,2,3-triols are indispensable key compounds for the generation of polyhydroxy groups in biomolecules such as carbohydrates, terpenoids and natural sugars [5,6]. The triol moieties provide some important structural features and biological activity to an organic molecule [7]. In addition to their biological and synthetic significance, the triols are used in various industrial processes such as artificial sugar and antibiotic production [8].

There have been many methods proposed for the synthesis of the 1,2,3-triols [5,9]. However, most of these methods have suffered from the use of toxic OsO₄ as the homogenous catalyst and multistep reaction steps. Besides these problems, the formation of some undefined organic-osmium impurities as by-products was generally observed at the end of catalytic reaction [10]. In this regard, a new synthetic method acquiring the simple reaction conditions and elimination of the toxicity of OsO_4 as well as providing high chemical yield and selectivity is required for the synthesis of 1.2.3-triples

Triols (particularly 1,2,3-triols) **1** are usually prepared by (i) the reduction of keto-diols **2** with LiAlH₄ [11] or NaBH₄ [12,13], (ii) acid catalyzed ring opening of epoxy alcohols **3** [14], (iii) the substitution of dihydroxy-halogen **4** [15] or (iv) the oxidation of allylic alcohols **5** with OsO₄ [16] or KMnO₄ [17] (Scheme 1).

In addition to these methods, our group has recently developed a new protocol for the synthesis of 1,2/3-triols from the allylic hydroperoxides using only the catalytic amount of OsO₄ in the absence of a co-oxidants (Scheme 2) [18]. Our method was successfully applied to many kind of allylic hydroperoxides and the corresponding 1,2/3-triols were obtained in high chemical yields. The key point for our new synthetic method was the role of hydroperoxide groups both as co-oxidant and substrate. It was also the first example for the synthesis of 1,2/3-triols from the allylic hydroperoxides via intramolecular oxygen atom transfer.

In a more recent study, we have also reported an effective and environmentally benign method for the synthesis of 1,2-cis-diols from the dihydroxylation of olefins [19]. In this eco-friendly method, the zeolite-confined osmium(0) nanoclusters (zeolite-Os⁰) were used as the reusable catalyst and H_2O_2 served as a

^{*} Corresponding authors. Tel.: +90 442 2314410; fax: +90 442 2360948. *E-mail addresses*: gultekin@atauni.edu.tr (M.S. Gültekin), ondermetin1981@hotmail.com, ometin@atauni.edu.tr (Ö. Metin).

$$OH$$
 OH
 OH

Scheme 1. General methods for the synthesis of 1,2,3-triols.

OsO₄(cat.)
$$\begin{array}{c} OsO_4(cat.) \\ \hline \\ H_2O\text{-aceton} \\ \hline \\ (1:9), \text{ rt} \end{array}$$
OH

Scheme 2. The method developed by us for the synthesis of 1,2/3-triols from the allylic hydroperoxides in the presence of catalytic amount of OsO_4 without using any co-oxidant.

co-oxidant in acetone/water (v/v = 9/1) mixture at room temperature (Scheme 3). The catalytic dihydroxylation reaction proceeded smoothly for a wide range olefins and the corresponding 1,2-cisdiols were obtained in excellent chemical yield under the optimized conditions.

By combining the latter two methods mentioned above, we developed a facile method for the synthesis of 1,2/3-triols that is presented here. Our effective and eco-friendly method for the one-pot synthesis of 1,2/3-triols involves the zeolite-Os⁰ as reusable catalyst and the hydroperoxide group serving as both the co-oxidant and substrate. The use of zeolite-Os⁰ catalyst provides not only the elimination of OsO₄ toxicity by recovering it from the reaction solution but also preventing the formation of organic-osmium impurities as by-products. The cyclic or linear allylic

Scheme 3. The method developed by us for the dihydroxylation of olefins catalyzed by zeolite-Os⁰ [19].

hydroperoxides, prepared by the photooxygenation of corresponding alkenes, were successfully converted to the corresponding 1,2/3-triols with the high chemical yields and selectivity. We believe that our new catalytic system for the synthesis of 1,2/3-triols will be a good candidate to be used in the synthetic organic chemistry owing to its effectiveness, simplicity, eco-friendly and reusability.

2. Experimental

2.1. Materials

Osmium(III) chloride trihydrate (OsCl₃·3H₂O), sodium borohydride (NaBH₄, 98%), zeolite-Y (Na₅₆[(AlO₂)₅₆(SiO₂)₁₄₀]·250H₂O), 2,3-dimethylbut-2-ene (98%), 2,3-dimethylbut-1-ene (97%), cisor trans-but-2-ene (99%), cyclopentene (99%), cyclohexene (99%), cycloheptene (97%), cyclooctene (95%) were purchased from Sigma-Aldrich® and were used without further purification. Other organic compounds; octalin (96%), 1,4-dihydronaphthalene (98%), 7-oxabicyclo[4.1.0]hept-3-ene (98%) synthesized by the established methods in the literature. Deionized water was distilled by water purification system (Milli-Q system). All glassware and Teflon coated magnetic stir bars were cleaned with acetone, followed by copious rinsing with distilled water before drying in an oven at 150 °C. Transmission electron microscope images were obtained by a JEOL 2100 TEM (200 kV). ¹H and ¹³C NMR spectra were recorded on a Varian 200 MHz or Bruker Avance DPX 400 MHz spectrometer.

2.2. General procedure for the preparation of zeolite-confined osmium(0) nanoclusters

The zeolite-Os⁰ catalysts were prepared by using our reported procedure including the ion-exchange of Os³⁺ ions with the extra

Download English Version:

https://daneshyari.com/en/article/65775

Download Persian Version:

https://daneshyari.com/article/65775

<u>Daneshyari.com</u>