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a b s t r a c t

In this paper, a combined approach of boundary element method and precise integration method is
presented for solving transient heat conduction problems with heat sources. The boundary integral
equation is derived by means of the Green’s function for the Laplace equation, and as a result, two domain
integrals are involved in the derived integral equations. Firstly, the radial integration method is used to
convert the domain integrals into equivalent boundary integrals, so the system of ordinary differential
equations on the boundary integral equation can be obtained by the boundary element method. Then,
the precise integration method is adopted to solve the system of ordinary differential equations. Finally,
several numerical examples are given to demonstrate the performance of the present method. The results
show that the present approach gives satisfactory performance even for very large time step size, and the
results given by the present approach are independent of the time step size if some integrals involves
boundary conditions and heat sources can be integrated analytically.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The transient heat conduction problems occur widely in engi-
neering practice. Generally, only linear problems with simple
geometries and boundary conditions can lead to analytic results
[1]. Therefore, in the past half century, many works have been done
to develop effective numerical methods for solving these problems.

The transient heat conduction problems include the variables of
space and time. Currently, the space discretized methods include
mainly the finite difference method (FDM) [2], the finite element
method (FEM) [3], the meshless method [4], the finite volume
method (FVM) [5] and the boundary element method (BEM)
[6,7]. For discretizing the time domain, in most cases the finite dif-
ference is used to replace the derivative of time [8]. It is well
known that the FDM is very general to solve the time-dependent
problems. However, the accuracy of results is sensitive to the time
step size in FDM [2]. In addition, for the general finite-difference
time-domain method [9], Courant–Friedrich–Levy (CFL) condition
[10] must be satisfied when a time step size is used.

In 1994, Zhong and Williams [11] proposed the precise integra-
tion method (PIM). Not only the method can obtain the stable and
high precision results, but also the results are independent of the

time step size when the free term can be divided into the functions
of space and time. It is worthy to emphasize that the method is
easy to implement. Up to now, the method combining the PIM with
the FEM has been applied to many fields, such as the effect of non-
linear contact upon natural frequency of composite plate [12], the
transient forced vibration analysis of beams [13] and the sensitiv-
ity analysis and optimization problem [14]. In addition, the method
combining the PIM with meshless local Petrov–Galerkin method
has been applied to the transient heat conduction problems [15].

Compared with FDM, FEM, FVM and the meshless method, BEM
is very robust for solving the linear and homogeneous heat conduc-
tion problem [16–18]. However, solving nonlinear problems is still
a challenge task by BEM, since the fundamental solutions of these
problems can be obtained only for some very special cases [19–22].
Fortunately, we can use the fundamental solution of the linear
problem to solve the nonlinear problem, whereas domain integrals
are involved in resulting integral equations.

To overcome this difficulty, the dual reciprocity method (DRM)
[23] and multiple reciprocity method (MRM) [24] have been used
to transform the domain integrals into the boundary integrals. In
this method, the transformation is carried out by approximating
the source term with a series of basis functions and using their par-
ticular solutions. The DRM has been extensively used to solve the
nonlinear and nonhomogeneous problems [25]. The deficiency of
this technique is that the particular solutions may be difficult to
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obtain for some complicated problems. In addition, even for known
heat sources term, the method still requires an approximation of
the known function [25].

In 2002, Gao [26,27] presented a very robust new transforma-
tion technique, which called the radial integration method (RIM).
The RIM not only can transform any complicated domain integral
to the boundary without using particular solution, but also can
remove various singularities appearing in domain integrals [28].
The main feature of RIM is that it can treat different types of
domain integrals appearing in the same integral equation in a uni-
fied way, since it does not resort to particular solutions as in the
DRM. The method combining the RIM with the BEM is called the
radial integration boundary element method (RIBEM) [29,30].

The RIBEM has been widely applied to many fields including the
dynamic analysis of laminate composite plates [31], the nonlinear
and nonhomogeneous elastic problems [32], the crack analysis in
functionally graded materials [33], the viscous flow problems
[34], the one-phase solidification problem [35] and the heat con-
duction problems [29,30,36]. However, when solving time-depen-
dent problems via RIBEM, the results are sensitive for different
time step size due to using the finite difference technique to
replace the derivative term with respect to time.

In this paper, the PIM and the RIBEM (it will be abbreviated as
PIBEM) are combined to solve transient heat conduction problems
with heat sources. First of all, we discretize space domain by using
the RIBEM to obtain a system of ordinary differential equations
(ODEs) with respect to time, and then solve the ODEs by the PIM.
Finally, three examples are presented to validate the proposed
method.

2. Governing equations

Considering a two-dimensional bounded domain X with con-
stant material parameters, the governing equation for transient
heat conduction problems in isotropic media can be expressed as

kr2Tðx; tÞ þ f ðx; tÞ ¼ qc
@Tðx; tÞ
@t

; x 2 X ð1Þ

where x ¼ ðx1; x2Þ;r2 ¼ @2=@x2
1 þ @

2=@x2
2 is the Laplace operator,

Tðx; tÞ is the temperature at point x 2 X and at time t; k is the ther-
mal conductivity, f ðx; tÞ is a known heat source at time t;q is the
density and c is the specific heat.

The initial condition is

Tðx;0Þ ¼ T0 ð2Þ

where T0 is a prescribed function. The boundary conditions are

Tðx; tÞ ¼ Tðx; tÞ x 2 C1 ð3Þ

� k
@T
@n
¼ �qðx; tÞ x 2 C2 ð4Þ

where C1 [ C2 ¼ C;C1 \ C2 ¼£;C ¼ @X; T and �q are prescribed
temperature history and flux on the boundary, respectively.

3. Numerical implementation of the RIBEM

3.1. Boundary-domain integral equation

To derive the boundary integral equation, a weight function G is
introduced to Eq. (1) and the following domain integrals can be
written asZ

X
Gkr2TdXþ

Z
X

GfdX ¼
Z

X
Gqc

@T
@t

dX ð5Þ

Using Gauss’ divergence theorem, the first domain integral can be
manipulated as

Z
X

Gkr2TdX ¼ k
Z

C
G
@T
@n
� T

@G
@n

� �
dCþ k

Z
X

Tr2GdX ð6Þ

If the weight function G is Green’s function Gðx; yÞ which satisfies
the following equation:

r2Gþ dðx� yÞ ¼ 0 ð7Þ

where dðx� yÞ is the Dirac delta function, according to literature
[37], the Green’s function Gðx; yÞ in Eq. (7) can be expressed as

Gðx; yÞ ¼ 1
2p ln

1
rðx; yÞ ð8Þ

where rðx; yÞ is the distance between the source point y and the
field point x.

Then in terms of the integration property of the Dirac delta
function, the domain integral of Eq. (6) can be written asZ

X
Tr2GdX ¼ �TðyÞ ð9Þ

Substituting this equation into Eqs. (6) and (5), it follows that

kTðyÞ ¼ k
Z

C
G
@T
@n
� T

@G
@n

� �
dCþ

Z
X

Gf dX� qc
Z

X
G
@T
@t

dX ð10Þ

Boundary-domain integral Eq. (10) is valid only for internal points.
For boundary points, a similar integral equation can be obtained by
letting y ! C as is done in the conventional BEM [37]. A general
integral equation is presented as following:

cðyÞkTðyÞ ¼ k
Z

C
G
@T
@n
� T

@G
@n

� �
dCþ

Z
X

Gf dX� qc
Z

X
G

� @T
@t

dX ð11Þ

where

cðyÞ ¼
1; y 2 X
uðyÞ
2p ; y 2 C

(
ð12Þ

uðyÞ is the interior angle at a point y of the boundary C. Particularly,
cðyÞ ¼ 0:5 if y is a smooth point on the boundary.

3.2. Transformation of domain integrals to the boundary by RIM

The two domain integrals involved in Eq. (11) are transformed
into equivalent boundary integrals by RIM [26–28]. In order to
describe clearly the process, we assume that the boundary C is dis-
cretized into Nb linear elements, the domain X is distributed NI

internal nodes and the total number of nodes is N ¼ Nb þ NI .
In general, the heat source f ðx; tÞ is a known function. Therefore,

the RIM can be directly used to transform the first domain integral
in Eq. (11) to the boundary as follows:Z

X
Gðx; yÞf ðx; tÞdXðxÞ ¼

Z
C

1
rðz; yÞ

@r
@n

FAðz; y; tÞdCðzÞ ð13Þ

where the radial integral FA can be expressed as

FAðz; y; tÞ ¼
Z rðz;yÞ

0
Gðx; yÞf ðx; tÞndn ð14Þ

In Eqs. (13) and (14), it is noted that z is the boundary point and the
variable transformation relationship about x can be given by [26]

x ¼ y þ r̂n ð15Þ

In Eq. (15), r̂ ¼ ðz� yÞ=rðz; yÞ is a unit vector or it can also be
expressed as a component form, i.e., xi ¼ yi þ r;in where
r;i ¼ @r=@xi ¼ ðzi � yiÞ=rðz; yÞ subscript i ¼ 1;2. The radial integral
FA can be evaluated analytically or numerically by using the above
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