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a b s t r a c t

The tendency towards an increase in rolling speeds, which is characteristic of the development of modern
sheet rolling, causes an increase requirement of accurate prediction on-line control models for the ther-
mal crown of work rolls. In this paper, a precision on-line model is proposed for the prediction of thermal
crown in hot-strip rolling processes. The heat conduction of the roll temperature can be described by a
nonlinear partial differential equation (PDE) in the cylindrical coordinate. After selecting a set of proper
basis functions, the spectral methods can be applied to time/space separation and model reduction, and
the dynamics of the heat conduction can be described by a model of high-order nonlinear ordinary
differential equations (ODE) with a few unknown nonlinearities. Using a technique for further reducing
the dimensions of the ODE system, neural networks (NNs) can be trained to identify the unknown non-
linearities. The low-order predicted model of the thermal crown is given in state-space formulation and
efficient in computation. The comparisons of prediction values for the thermal crown with the production
data in an aluminum alloy hot rolling process show that the proposed method is effective and has high
performance.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The tendency towards an increase in rolling speeds, which is
characteristic of the development of modern sheet rolling, causes
an increase in the instability of a number of production factors
which influence the shape of the strip [1]. The flatness and profile
of the strip are mainly dependent on the configuration of the roll
gap across the width of the strip. The shape of the work rolls is
one of the main factors affecting the shape of the roll gap, which
has a significant effect on the roll gap contour. However, the shape
of the work rolls changes dynamically due to the thermal deforma-
tion and wear of the rolls in continuous rolling of strip. With the
exception of the work roll thermal crown expansion, the factors
can be satisfactory compensated by a proper setup computation
just before the rolling of each strip [2,3]. Therefore, real-time con-
trol of the uniformity of the thermal expansion of work rolls
becomes the key factor in obtaining a good roll gap contour.

Normally, an adequate design of the cooling system of work
rolls can contribute to minimize the magnitude and shape irregu-
larity of the thermal crown generated during the rolling process. It
can keep the roll temperature and the thermal expansion within a

proper range. In order to study the influence of cooling system for
hot rolling processes, a good understanding of the thermal crown
of rolls during hot rolling processes is critical. Due to the rapidity
of the rolling process and the impossibility of measuring the
thermal crown of work rolls online, an on-line model with precise
computational efficiency is very important for the prediction of
thermal crown.

The problem of obtaining the thermal crown of work rolls is
stated as a transient heat transfer problem. Heat transfer inside
the work rolls is considered to occur by conduction and around
the work rolls periphery by radiation and conduction (with the
strip) and convection (with the water and air). And the fact that
the influence of the rotation of work rolls in the heat transport phe-
nomenon is negligible, when different methods of solution, such as
analytical, experimental and numerical, have been used to predict
the temperature and thermal crown profile of work rolls.

An analytical solution was developed by Pawelski [4] for the
heat transfer equation between work rolls and strip (roll bite
region) to find the heat transfer coefficient in this region. This
coefficient is a function of roll speed, scale thickness, physical
properties of rolls and strip, and roll bite contact time. Tseng [5]
also developed an analytical understanding of thermal expansion
of work rolls to provide thermal displacements and expansion of
the rolls. Guo [6] developed a semi-analytic solution of wok rolls
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thermal crown to establish a correlation between the thermal pro-
file of the rolls and the strip shape. Because of the limitations of the
analytical solution in which all the boundary conditions are not
considered comprehensively, it cannot give the accurate predicted
thermal crown of the work rolls.

Most of the investigators preferred to use numerical and exper-
imental solutions. A great many investigators have studied the
thermal crown using the finite difference method (FDM) which is
a common numerical method to solve the multidimensional heat
transfer problems. Wilmotte and Mignon [7] used an axisymmetric
finite difference method model to study the circumferential mean
values of the roll thermal expansion. Zhang et al. [8] proposed a 2-
dimensional axisymmetric model developed by the finite-differ-
ence method to predict the transient temperature field and the
thermal profile of the work rolls in hot strip rolling process. The
calculation results were compared with the production data of a
1700 mm hot strip rolling mill, and good agreement was found.
Nakagawa [9] studied the transient build-up of the thermal crown
based on a three-dimensional Lagrangian finite difference model
and concluded that the reduction, strip temperature, and cooling
condition are three major influential parameters. Bennon [10]
developed as Eulerian finite-difference scheme to predict the ther-
mal expansion at different spray cooling patterns in cold rolling of
aluminum. Zhang et al. [1] developed a finite difference model to
simulate the thermal deformation of the continuously variable
crown (CVC) work rolls in hot strip rolling. Generally speaking,
the results of the calculation of the roll temperature using the finite
difference method are in good agreement with the measured val-
ues. However, finite difference method for the calculation of the
thermal crown in rolling processes will produce high-order models
that are unsuitable for synthesizing implements and real-time
control.

There are also other published researches concerning mathe-
matical modeling of the hot rolling processes, while numerical
techniques particularly the finite element analysis have been uti-
lized for determining the deformation behavior of work roll. Guo
et al. [11] developed a simplified finite element method (FEM) to
analyze the temperature field and thermal crown of the roll
according to the practical boundary conditions. Park et al. [12] car-
ried out the coupled analyses of heat transfer and deformation for
casting rolling by using the finite element software MARC to exam-
ine the thermal crown. Benasciutti et al. [13] proposed a simplified
numerical approach based on finite-elements to computer thermal
stresses occurring in work roll of hot rolling mills, which are
caused by a non-uniform temperature distribution over the work
roll surface. The FEM can be used to analyze the temperature field
and thermal deformation conveniently, and the results of the
simulation have high precision. However, the FEM method is not
efficient in computation and also produces high-order models that
are unsuitable for synthesizing controller design and real-time pre-
diction control.

The present study derives an on-line model with high perfor-
mance for the prediction of the thermal crown in hot rolling pro-
cesses. The heat conduction of the roll temperature can be
described by a nonlinear partial differential equation (PDE) in the
cylindrical coordinate. After selecting a set of proper basis func-
tions, the spectral methods can be applied to time/space separation
and model reduction, and the dynamics of the heat conduction can
be described by a model of high-order nonlinear ordinary differen-
tial equations (ODE) with a few unknown nonlinearities. Using a
technique for further reducing the dimensions of the ODE system,
neural networks (NNs) can be trained to identify the unknown
nonlinearities using the production data of the rolling mill, and a
lower-dimensional hybrid intelligent model of the thermal crown
is given in state-space formulation, which is efficient in computa-
tion and suitable for the further application of the traditional

control techniques. The comparisons of prediction for the thermal
crown with the production data in an aluminum alloy hot rolling
process show that the proposed method is effective and has high
performance.

2. Fundamental dynamics of the heat transfer of work rolls

The thermal expansion is one of the important factors affecting
the roll gap profile. The work roll periodically contacts with hot
strips and cooling liquid and as a result the surface temperature
changes drastically. Heat transfer in the work roll is considered
to occur by conduction and around the work roll periphery by radi-
ation and conduction with the strip and convection with the water
and air [14]. The work roll, rotated at high speed, is considered as a
cylinder and the partial differential equation governing the heat
conduction in a cylindrical coordinate can be expressed as:

qc
@T
@t
¼ kt

@2T
@r2 þ

1
r
@T
@r
þ 1

r2

@2T

@w2 þ
@2T
@x2

 !
þ qþ lðTÞ þ gðTÞ

þ hðTÞ ð1Þ

where r and w are the radial and circumferential direction, respec-
tively. Because the influence of the work roll is second-order mag-
nitude, the variation of temperature along the circumferential
direction of the work roll can be ignored, i.e. o2T/ow2 = 0. Eq. (1)
can then be transferred into
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where T = T(x, r, t) denotes the temperature of the work roll, t is the
time variable. r e [0, R] and x e [0, l] are cylindrical coordinates in
radial and axial direction. kt is the thermal conductivity coefficient,
q, c are the density and specific heat, respectively. The rest of
variables are introduced as follows:

(1) q is the heat generation rate.
(2) l(T) denotes the quantity of heat conduction between work

rolls and the strip in unit time, which is a function of the
surface temperature of the work rolls.

(3) g(T) is the quantity of heat convection between work rolls
and the coolant in unit time, which is also a function of
the surface temperature of the work rolls.

(4) h(T) is the quantity of heat convection between work rolls
and the air in unit time.

The surface around the work roll periphery by radiation and
conduction with the strip and convection with the water and air,
and the boundary conditions are not completely known. As it is
difficult to obtain reasonable boundary conditions using only phys-
ical insights, for simplicity one can set the boundary conditions to
be unknown nonlinear functions of the boundary temperature, the
space coordinates (x, r) of the work roll and the ambient tempera-
ture TE as follows:
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where

fb1 ¼ f1ðx; r; T; TEÞjx¼0; f b2 ¼ f2ðx; r; T; TEÞjx¼l

fb3 ¼ f3ðx; r; T; TEÞjr¼0; f b4 ¼ f4ðx; r; T; TEÞjr¼R

With fb1 � fb4 being unknown nonlinear functions.
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