International Journal of Heat and Mass Transfer 77 (2014) 74-97

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows

Sung-Min Kim, Issam Mudawar*

Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL), Mechanical Engineering Building, 585 Purdue Mall, West Lafayette, IN 47907-2088, USA

ARTICLE INFO

Article history: Received 30 March 2014 Received in revised form 16 April 2014 Accepted 16 April 2014 Available online 4 June 2014

Keywords: Pressure drop Flow boiling Condensation Mini-channel Micro-channel

ABSTRACT

Two-phase flow in mini/micro-channels has been the flow configuration of choice for many cooling applications demanding very high rates of heat dissipation per unit volume. Past research aimed at predicting the frictional pressure drop in mini/micro-channels includes a large number of studies that rely on either the Homogeneous Equilibrium Model (HEM) or semi-empirical correlations. But as the number of published studies continues to rise, thermal design engineers are confronted with tremendous confusion when selecting a suitable model or correlation. The primary reason behind this confusion is limited validity of most published methods to a few working fluids and narrow ranges of operating conditions. The present study addresses this limitation by discussing the development of two consolidated mini/ micro-channel databases. The first is for adiabatic and condensing flows, and consists of 7115 frictional pressure gradient data points from 36 sources, and the second for boiling flow, and consists of 2378 data points from 16 sources. These consolidated databases are used to assess the accuracy of previous models and correlations as well as to develop 'universal' correlations that are applicable to a large number of fluids and very broad ranges of operating conditions.

© 2014 Elsevier Ltd. All rights reserved.

Contents

1. 2. 3. 4.	ntroduction 74 Compressibility, flashing, choking and two-phase flow instabilities 77 Previous predictive two-phase pressure drop methods. 79 Pressure drop in adiabatic and condensing flows 82 4.1. Consolidation of world databases for adiabatic and condensing mini/micro-channel flows 82 4.2. Assessment of previous frictional pressure gradient correlations against consolidated database for adiabatic and condensing mini/micro-channel flows 82			
	4.3. Universal predictive method based on consolidated database for adiabatic and condensing mini/micro-channel flows	85		
5.	Pressure drop in flow boiling	88		
	5.1. Consolidation of world databases for flow boiling in			
	mini/micro-channels	88		
	5.2. Assessment of previous frictional pressure gradient correlations against consolidated database for flow boiling in mini/micro-channels	89		
	5.3. Universal predictive method based on consolidated database for flow boiling in mini/micro-channels	92		
	5.4. Recommendations for future work	94		
6.	Conclusions	94		
	Conflict of interest.	95		
	Acknowledgment	95		
	References	95		

* Corresponding author. Tel.: +1 (765) 494 5705; fax: +1 (765) 494 0539. E-mail address: mudawar@ecn.purdue.edu (I. Mudawar). URL: https://engineering.purdue.edu/BTPFL (I. Mudawar).

Review

 \bar{v}

 v_{fg}

W

 W_{ch}

We

X x

7

 α

в

θ

μ

ξ

 $\rho \\ \bar{\rho}$

σ

 ϕ Ω

Subscripts

Greek symbols

mixture specific volume

width of rectangular channel

Lockhart-Martinelli parameter

stream-wise coordinate

channel aspect ratio ($\beta < 1$)

percentage predicted within ±30%

percentage predicted within ±50%

two-phase multiplier; channel inclination angle

parameter in Chen et al. [103] correlation

saturated liquid

Weber number

void fraction

dynamic viscosity

mixture density

surface tension

quality

densitv

width of heat sink

specific volume difference between saturated vapor and

Nomenclature

Bd	Bond number
Bd*	modified Bond number
Во	Boiling number, q''_H/Gh_{fg}
С	parameter in Lockhart–Martinelli [94] correlation
Са	Capillary number, $Ca = (\mu_f G)/(\rho_f \sigma)$
D	tube diameter
D_h	hydraulic diameter
f	Fanning friction factor
Fr	Froude number
G	mass velocity
g	gravitational acceleration
ĥ	enthalpy
H_{ch}	height of rectangular channel
h _{fo}	latent heat of vaporization
lf	superficial liquid velocity, $I_f = G(1 - x)/\rho_f$
Ĭ,	superficial vapor velocity, $J_{\sigma} = Gx/\rho_{\sigma}$
Ĺ	length
Μ	two-phase Mach number
MAE	mean absolute error
Ν	number of data points
N _{conf}	Confinement number
p	pressure
\hat{p}_{atm}	atmospheric pressure
p_{crit}	critical pressure
P_F	wetted perimeter of channel
P_H	heated perimeter of channel
P_R	reduced pressure, $P_R = p/p_{crit}$
Δp	pressure drop
q''_{hase}	heat flux averaged over base of heat sink
q''_H	effective heat flux averaged over heated perimeter of
-11	channel
Re	Reynolds number
Re _{eq}	equivalent Reynolds number
Re _f	superficial liquid Reynolds number, $Re_f = G(1 - x)D_h/\mu_f$
Refo	liquid-only Reynolds number, $Re_{fo} = GD_h/\mu_f$
Reg	superficial vapor Reynolds number, $Re_g = GxD_h/\mu_g$
Rego	vapor-only Reynolds number, $Re_{go} = GD_h/\mu_g$
Retp	two-phase Reynolds number, $Re_{tp} = GD_h/\mu_{tp}$
Su	Suratman number
Т	temperature
t	time
и	mean velocity
v	specific volume

	Subscript	5
	Α	accelerational
	di	dryout incipience
	ехр	experimental (measured)
	F	frictional
	f	saturated liquid
c	fo	liquid only
1	G	gravitational
	g	saturated vapor
	go	vapor only
	in	channel inlet
	k	liquid (f) or vapor (g)
	pred	predicted
	sat	saturation
	sub	subcooling
	tp	two-phase
	tt	turbulent liquid-turbulent vapor
	tv	turbulent liquid–laminar vapor
	vt	laminar liquid–turbulent vapor
	vv	laminar liquid–laminar vapor

1. Introduction

Developers of many modern devices are faced with two conflicting trends: the need to dissipate increasing amounts of heat, and the quest for more compact and lightweight designs. These trends have spurred unprecedented increases in heat dissipation per volume and per surface area, rendering most present air cooling and single-phase liquid cooling solutions virtually obsolete [1,2]. High performance computers, electric vehicle power electronics, avionics, and defense laser and microwave systems are but a few examples of modern applications that are confronted with these trends. Cooling demands in these and many other applications have resulted in a paradigm shift from single-phase to twophase cooling strategies to capitalize upon the coolant's sensible and latent heat rather the sensible heat alone. And phase change cooling solutions come in a variety of configurations that could meet the system requirements of the application in question. These include pool boiling [3,4], channel flow boiling [5,6], mini/microchannels [7,8], jet [9–12], spray [13–15], boiling on enhanced surfaces [16–19], and hybrid cooling techniques that combine the benefits of two or more two-phase cooling schemes [20,21].

While most two-phase cooling systems employ air-cooled condensers to reject the heat to the ambient, the quest for more compact and light weight system designs has shifted interest to the use of miniature condensers to reject the heat by condensing a primary coolant in a compact primary cooling loop. The heat is transferred to a secondary liquid coolant and transported to a remote heat exchanger where it is ultimately rejected to the ambient. Employing boiling and condensation in a cooling system has netted orders of magnitude enhancement in heat transfer coefficients and therefore large reductions in cooling system's weight and volume compared to single-phase liquid cooling counterparts.

Among the different two-phase cooling schemes, two-phase flow in mini/micro-channels has been especially favored for its ability to deliver very high heat dissipation per unit area and unit volume, in addition to offering a number of other practical advantages such as ease of fabrication and small coolant inventory. Fig. 1 shows several examples of applications that have benefited greatly Download English Version:

https://daneshyari.com/en/article/657769

Download Persian Version:

https://daneshyari.com/article/657769

Daneshyari.com