Accepted Manuscript

Effective, rapid and selective adsorption of radioactive Sr²⁺ from aqueous solution by a novel metal sulfide adsorbent

Mingdong Zhang, Ping Gu, Zhenguo Zhang, Jing Liu, Lihua Dong, Guanghui Zhang

PII: S1385-8947(18)31107-0

DOI: https://doi.org/10.1016/j.cej.2018.06.069

Reference: CEJ 19280

To appear in: Chemical Engineering Journal

Received Date: 23 April 2018 Revised Date: 5 June 2018 Accepted Date: 12 June 2018

Please cite this article as: M. Zhang, P. Gu, Z. Zhang, J. Liu, L. Dong, G. Zhang, Effective, rapid and selective adsorption of radioactive Sr²⁺ from aqueous solution by a novel metal sulfide adsorbent, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.06.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effective, rapid and selective adsorption of radioactive Sr²⁺ from aqueous solution by a novel metal sulfide adsorbent

Mingdong Zhang, Ping Gu, Zhenguo Zhang, Jing Liu, Lihua Dong, Guanghui Zhang School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China *Corresponding author.

E-mail address: zgh@tju.edu.cn (G. Zhang).

Abstract: A novel metal sulfide (KZTS) adsorbent has been synthesized using a simple one-step hydrothermal method for radioactive Sr²⁺ removal from aqueous solutions. XRD and TG analyses indicated that KZTS was chemically and thermally stable. SEM-EDS and TEM images showed that KZTS possessed both flake-like and polyhedral structure with the formula of $K_{1.67}Zn_{0.67}Sn_{2.17}S_{6.00}$ and $K_{5.84}Zn_{3.47}Sn_{5.04}S_{16.99}$, respectively. The average formula was determined to be K_{1.87}ZnSn_{1.68}S_{5.30} using ICP-OES. The adsorption ability of KZTS for Sr²⁺ was evaluated in detail by batch experiments. The kinetics studies showed that Sr²⁺ was rapidly removed from the aqueous solution within the equilibrium time of 10 min. According to Langmuir isotherm, the maximum adsorption capacity of KZTS was 19.3 mg/g at 298 K and the high value of the Langmuir constant indicated the high affinity of KZTS for Sr²⁺. The adsorption mechanisms involved ion exchange and surface Sr-S bonding interactions, with the former dominating. High adsorption performance was observed over a broad pH range of 3-11, although it could be inhibited by co-existing ions, especially Ca²⁺ and Mg²⁺. The adsorbent showed a high distribution coefficient ($K_d = 1.26 \times 10^6$ mL/g) and negligible adsorbate leaching at low Sr²⁺ concentrations, indicating the strong and irreversible adsorption of Sr²⁺ on KZTS. Further, KZTS exhibited high selectivity for Sr2+ in alkaline and tap water. These remarkable features suggest that KZTS is a highly desirable adsorbent to remove radioactive strontium from radioactive wastewater.

Keywords: Radioactive wastewater; Radioactive strontium; Adsorption; Ion exchange; Metal sulfide

1

Download English Version:

https://daneshyari.com/en/article/6578299

Download Persian Version:

https://daneshyari.com/article/6578299

<u>Daneshyari.com</u>