Accepted Manuscript

Quantitative relationships between molecular parameters and reaction rate of organic chemicals in Fenton process in temperature range of 15.8 °C - 60 °C

Zhiwen Cheng, Bowen Yang, Qincheng Chen, Zhemin Shen, Tao Yuan

PII: S1385-8947(17)32227-1

DOI: https://doi.org/10.1016/j.cej.2017.12.105

Reference: CEJ 18266

To appear in: Chemical Engineering Journal

Received Date: 27 October 2017 Revised Date: 15 December 2017 Accepted Date: 20 December 2017

Please cite this article as: Z. Cheng, B. Yang, Q. Chen, Z. Shen, T. Yuan, Quantitative relationships between molecular parameters and reaction rate of organic chemicals in Fenton process in temperature range of 15.8 °C - 60 °C, *Chemical Engineering Journal* (2017), doi: https://doi.org/10.1016/j.cej.2017.12.105

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Quantitative relationships between molecular parameters and reaction rate of organic chemicals in Fenton process in temperature range of 15.8 $^{\circ}\text{C}$ - 60 $^{\circ}\text{C}$

Zhiwen Cheng^a, Bowen Yang^a, Qincheng Chen^b, Zhemin Shen^{a*}, Tao Yuan^{a*},

a. School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800

Dongchuan Road, Shanghai 200240, China.

b. School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

ABSTRACT:

In order to have a better prediction for the degradation reaction rate constant of organic compounds in Fenton process at different temperatures. A partial least squares (PLS) model was established based on 116 lgk values for 24 organic compounds and quantum chemical parameters, some basic information of molecules as well as the temperature of reaction system. The optimal model was demonstrated as stable, robust and had good predictive ability, with the associate statistical indices of adjusted squared correlation coefficient was 0.722, internal validation was 0.652, external validation was 0.512, cumulative cross-validation coefficient was 0.635, the criterions indicated the developed model could be used to estimate the reaction rate of organic compounds in Fenton process at different temperature. The model contains three components, the most significant descriptors explaining the reaction rate are T and T for component 1, the maximum charge in a carbon atom and minimum charge for nucleophilic attack for component 2, the charge in a hydrogen atom, maximum charge for hydroxyl radical attack and minimum value of bond order for component 3. The applicability domain (APD) of the proposed model was

^{*} Corresponding author: E-mail: <u>zmshen@sjtu.edu.cn</u> (Zhemin Shen); <u>taoyuan@sjtu.edu.cn</u> (Tao Yuan)

Download English Version:

https://daneshyari.com/en/article/6578300

Download Persian Version:

https://daneshyari.com/article/6578300

<u>Daneshyari.com</u>