Accepted Manuscript

Removal of norfloxacin by surface Fenton system ($MnFe_2O_4/H_2O_2$): Kinetics, mechanism and degradation pathway

Guan Wang, Dongye Zhao, Fangying Kou, Qiong Ouyang, Junyi Chen, Zhanqiang Fang

PII:	S1385-8947(18)31071-4
DOI:	https://doi.org/10.1016/j.cej.2018.06.033
Reference:	CEJ 19244
To appear in:	Chemical Engineering Journal
Received Date:	20 March 2018
Revised Date:	30 May 2018
Accepted Date:	7 June 2018

Please cite this article as: G. Wang, D. Zhao, F. Kou, Q. Ouyang, J. Chen, Z. Fang, Removal of norfloxacin by surface Fenton system (MnFe₂O₄/H₂O₂): Kinetics, mechanism and degradation pathway, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.06.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Removal of norfloxacin by surface Fenton system (MnFe₂O₄/H₂O₂): Kinetics, mechanism and degradation pathway

Guan Wang^a, Dongye Zhao^c, Fangying Kou^a, Qiong Ouyang^a, Junyi Chen^a, Zhanqiang Fang^{a,b*}

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, China ^bDongguan University Technology, Research Centre for Eco-environmental Engineering, Dongguan 523808, Guangdong, China

^cDepartment of Civil Engineering, Auburn University, Auburn, AL 36849, USA

*Corresponding author.

E-mail: <u>zhqfang@scnu.edu.cn</u> (Zhanqiang Fang).

Abstract

Magnetic MnFe₂O₄ particles were prepared by sol-gel method and used to activate H₂O₂ for norfloxacin removal from water. The results of hydrodynamic particle size distribution and Zeta potential analyses show that the particle size ranged from 100 nm to 500 nm, and Zeta potential from -76 mV to -25 mV at pH_{intial} = 7.0. The MnFe₂O₄/H₂O₂ system was able to remove 90.6% of norfloxacin at neutral pH, and the spent material can be reused in multiple cycles of operations. Fluorescence detection and DMPO capture analyses indicated that -OH was the main free radicals, which played a primary role in degradation of norfloxacin. The valence variations of Mn and Fe were analyzed by XPS, and the results showed that coupled transformations of Mn²⁺/Mn³⁺ and Fe²⁺/Fe³⁺ were involved in generation of -OH. Moreover, the removal rate in the MnFe₂O₄/H₂O₂ system showed a positive correlation with the adsorption efficiency of NOR by MnFe₂O₄. Eight degradation intermediates were detected by LC-QToF-MS/MS, and consequently, three degradation pathways were proposed, including Download English Version:

https://daneshyari.com/en/article/6578466

Download Persian Version:

https://daneshyari.com/article/6578466

Daneshyari.com