Accepted Manuscript

Building a direct Z-scheme heterojunction photocatalyst by $ZnIn_2S_4$ nanosheets and TiO_2 hollowspheres for highly-efficient artificial photosynthesis

Qin Li, Yang Xia, Chao Yang, Kangle Lv, Ming Lei, Mei Li

PII: S1385-8947(18)30908-2

DOI: https://doi.org/10.1016/j.cej.2018.05.094

Reference: CEJ 19110

To appear in: Chemical Engineering Journal

Received Date: 2 January 2018 Revised Date: 25 April 2018 Accepted Date: 16 May 2018

Please cite this article as: Q. Li, Y. Xia, C. Yang, K. Lv, M. Lei, M. Li, Building a direct Z-scheme heterojunction photocatalyst by ZnIn₂S₄ nanosheets and TiO₂ hollowspheres for highly-efficient artificial photosynthesis, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.05.094

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Building a direct Z-scheme heterojunction photocatalyst by $ZnIn_2S_4 \ nanosheets \ and \ TiO_2 \ hollowspheres \ for$ highly-efficient artificial photosynthesis

Qin Li,* Yang Xia, Chao Yang, Kangle Lv, Ming Lei, Mei Li*

Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission &

Ministry of Education, Hubei Province, South-Central University for Nationalities, Wuhan 430074,

PR China

Corresponding authors:

Email addresses: liqin0518@mail.scuec.edu.cn (Qin Li), ccnbl36@163.com (Mei Li)

Abstract

Facing the requirement of modern industrial development, selective reduction of 4-nitroaniline (4-NA) into p-phenylenediamine (PPD) via a facile, economic and eco-friendly photocatalysis technique has attracted more and more attention in recent years. In this study, ZnIn₂S₄ (ZIS) nanosheets grew in-situ on the surface of TiO₂ hollowspheres through a hydrothermal method and formed a direct Z-scheme heterojunction composite, which exhibited exceedingly better photocatalytic 4-NA reduction performance than bare ZIS and TiO₂. Such enhancement was mainly attributed to the dissimilar dimensionalities, intimate contact, and matchable band edge positions between ZIS and TiO₂ semiconductors. Moreover, the substaintial mechanism for the photocatalytic reaction in the ZIS/TiO₂ system was reasonably

Download English Version:

https://daneshyari.com/en/article/6578576

Download Persian Version:

https://daneshyari.com/article/6578576

<u>Daneshyari.com</u>