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a b s t r a c t

Condensational growth in aerosols involves simultaneous heat and mass transfer between particles and
their surrounding medium. There are several ways of modelling this phenomenon: dilute medium in the
vapour species, ideal gas behaviour, ideal mixture, constant thermophysical properties, etc. Most of the
solutions proposed for this problem are analytical, at the cost of simplifying many aspects of the phenom-
enon. This study develops a numerical method for the solution of the steady-state condensational growth
of aerosol liquid particles submerged in a gaseous mixture of condensable vapour and inert (non-
condensing) gas. Following the principles of the finite volume method, the mass and energy conservation
and the droplet heat balance equations are discretized in a spherical mesh around the particle, obtaining
their solution by means of a matrix procedure. Heat and mass are transferred satisfying the first-order
phenomenological equations. Transport and thermophysical properties of the mixture can be calculated
independently, avoiding other assumptions required in analytical procedures. In order to test the method,
it was compared with two analytical solutions for the non-dilute condensational growth problem. One of
these methods was applied as formulated in the literature, but the other was significantly improved,
applying new factors to separate heat and mass transfer as functions of temperature and composition,
respectively. The comparison was performed for four condensing substances (H2O, R-134a, n-pentane
and n-octane) with air as the inert gas. The results show good agreement under conditions for the ideal
gas law, with differences in the case that deviates slightly from this behaviour.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction between liquid particles and their surrounding
gaseous medium is a key aspect in the study of aerosols. Consisting
of a continuous gas phase with a discrete liquid phase suspended
within it, aerosols of this kind, also known as fogs, are very impor-
tant in atmospheric physics, but can also be present in other
systems. The term ‘condensational growth’ describes the process
by means of which a droplet grows or shrinks due to the conden-
sation or evaporation on its surface of the species that forms it.

The study of the condensational growth of aerosol particles can
be addressed in various ways. Some authors use techniques based
on the method of moments [1,2], while others use molecular
kinetics [3,4]. If changes in droplet size or composition and/or in
the bulk medium are expected to be very fast, non-steady state

versions of the energy balance are proposed, with a simpler formu-
lation of heat and mass transfer than in first-order transport equa-
tions [5–7]. Among the latter, the relative velocity between the
medium and the particle is sometimes considered and the problem
is studied in terms of convective heat and mass transfer, like stud-
ies in drug administration [8,9], particles in combustion engines
[10] and other more general studies [11]. In other cases, purely dif-
fusive heat and mass transfer are considered [12,13]. Non-steady
particle growth caused by diffusive heat and mass transport
between phases in gas–liquid contact devices with multiple spe-
cies involved was studied by Schaber et al. [14–16].

Condensational growth of aerosols in atmospheric physics is
usually based on the assumption of low vapour concentration
(dilute medium). It is formulated in this way in benchmark books
in this field [17,18] and is a frequent assumption in particles sur-
rounded by moist air. There are many other situations in which
the composition of the gaseous mixture can have a broad range,
so the dilute assumption is not applicable.

The first theoretical basis of droplet growth under the dilute
medium assumption was established by Maxwell [19], with heat
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and mass transport described by Fourier’s law of heat conduction
and Fick’s law of diffusion, respectively, considering a motionless
droplet within the uniform medium following a steady state
process.

The more general first-order transport equations in Wagner [20]
formulate condensational growth considering simultaneous heat
and mass transfer, Stefan-flow, thermal diffusion and the Dufour
effect around the droplet. Researchers have applied different
hypotheses to obtain analytical solutions of these first-order trans-
port equations over time. Wagner [20] assumed a zeroth-order
(Fourier and Fick’s laws) diffusion problem to obtain a solution.
Kulmala and Vesala [21] and Heidenreich [22] assumed a relation-
ship between concentration and temperature fields based on a pure
diffusion conception of the problem (although Heidenreich [22]
also provided a more complex option). The well-known solution
of Barrett and Clement [23] starts from the transport equations
without thermal diffusion or the Dufour effect and includes radia-
tive heat exchange on the droplet surface.

An important simplification in analytical methods arises from
the way they address the formulation of thermophysical proper-
ties, together with the equation of state defining the behaviour of
the state variables. The problem is defined by the fields of temper-
ature and composition of the gas mixture around the droplet, so
the value of thermophysical properties should be obtained as a
function of these variables. Difficult to formulate heat and mass
transport properties are also needed. For example, Wagner [20]
and Kulmala and Vesala [21] consider the exponential temperature
dependence of the diffusion coefficient, while Heidenreich [22]

calculates thermal conductivity as a function of temperature and
composition. In these cases, the ideal gas equation of state is impli-
cit in the solutions.

When the composition and temperature profiles around the
droplet are considered to remain stationary for the solution of
the heat and mass transfer, the process can also be considered as
stationary. This is a common approach in condensational growth
that can be applied when the relaxation time for temperature
and composition profiles [18] is much shorter than the time taken
by significant changes in the boundary conditions [24,25]. Known
as the quasi-steady state approach, it is assumed in classical stud-
ies like Wagner [20], Heidenreich [22] and Kulmala and Vesala
[21]. It is also assumed in studies dealing with binary condensa-
tional growth like in Kulmala et al. [26], whose analytical solution
was recently applied by Davies et al. [25], and in others related to
simulation of the behaviour of cloud condensation nuclei counters
[27,28] in which condensational growth is calculated via the the-
ory of diffusional growth [18].

During a study of aerosols in condensers of pure substances
mixed with inert gas, the need arose for an accurate tool to calcu-
late the heat and mass exchange between continuum and discrete
phases. Inside a condenser, the assumption of the vapour being the
minority species is not applicable; it could even be the main spe-
cies. Obtaining one solution of the first-order phenomenological
equations in Wagner [20] as precise as possible became the objec-
tive that has given rise to this paper. A numerical method based on
the finite volume method (FVM) has been developed to achieve
this aim, resulting in a highly flexible and precise procedure. The

Nomenclature

c Mole concentration
cp Specific heat capacity at constant p
Dg Binary diffusion coefficient
DT Thermal diffusion coefficient
dc Collision diameter
E Energy
FT ; FM Factors of dependence in eqs. with separated

variables
G Geometrical factor in mesh definition
ĝ Molar Gibbs free energy
h Specific enthalpy
ITT Energy conservation indep. terms
ITY Continuity independent terms
i Cell counter
j Mass flux
|̂ Mole flux
K1; K2 Factors for linear law in
Kn Knudsen number
Kt Ratio of diffusivities
k Thermal conductivity
M Molecular Mass
m Mass
_m Mass flow rate

N Number of moles
NC Number of mesh cells
nm Molecular concentration
p Pressure
_Q Heat transfer rate

q eat flux
Rp Particle radius
RU Ideal gas universal const.
r Radial position
S Saturation ratio
T Temperature

t Time
Ur Energy change by surface tension
~ur Unitary radial vector
V Volume
v Velocity
v̂ Specific molar volume
y Gas phase mole fraction

Greek Symbols
DHfg Specific latent heat of condensation
CT ; HT ; XT Energy conservation matrix terms
CY ; HY ; XY Continuity matrix terms
at Thermal diffusion factor
aT ; aM Mass and heat accommodation coeffs.
bT ; bM Factors for non-continuum regime
hX ; hT Factors for heat transfer eq.
k Mean Free Path
l Dynamic viscosity
nX ; nT Factors for mass transfer eq.
q Density
rlg Liquid–gas surface tension
sT Factor for heat transfer eq.
u Fugacity coefficient

Subscripts
b bulk
g gas mixture
in inert gas
l liquid
p particle
sat saturation
v vapour
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