### Accepted Manuscript

Integrated microalgae biomass production and olive mill wastewater biodegradation: optimization of the wastewater supply strategy

Fabrizio Di Caprio, Pietro Altimari, Francesca Pagnanelli

PII: S1385-8947(18)30898-2

DOI: https://doi.org/10.1016/j.cej.2018.05.084

Reference: CEJ 19100

To appear in: Chemical Engineering Journal

Received Date: 15 March 2018 Revised Date: 9 May 2018 Accepted Date: 13 May 2018



Please cite this article as: F. Di Caprio, P. Altimari, F. Pagnanelli, Integrated microalgae biomass production and olive mill wastewater biodegradation: optimization of the wastewater supply strategy, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.05.084

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

# Integrated microalgae biomass production and olive mill wastewater biodegradation: optimization of the wastewater supply strategy

Fabrizio Di Caprio, Pietro Altimari\*, Francesca Pagnanelli

Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro,

00185, Rome, Italy

#### **Abstract**

Olive mill wastewater (OMW) was supplied to *Scenedesmus sp.* cultures to simultaneously achieve biomass production and wastewater biodegradation. Two OMW supply strategies were implemented to prevent the reduced growth performances that are attained, compared to photoautotrophic cultivation, when OMW is supplied at the beginning of cultivation (batch strategy). A fed-batch strategy including the gradual OMW supply yielded a biomass production equal to 0.86 g/L, while 1.4 g/L was attained by a two-stage strategy including OMW addition during nitrogen-starvation. OMW enhanced the carbohydrate accumulation (up to 44%) through the removal of OMW sugars (60-70%). About 55% OMW phenol removal was achieved by the fed-batch strategy when the phenol concentration was lower than 100 mg/L, and by the two-stage strategy when the heterotrophic stage lasted longer than 8-10 days. The illustrated results indicate that the OMW supply strategy can be purposefully tailored to regulate biomass production and OMW biodegradation.

#### **Keywords**

*Scenedesmus* sp., olive mill wastewater, microalgae, biofuels, phenols, heterotrophic

<sup>\*</sup> Correspondence about this article should be addressed to Pietro Altimari at pietro.altimari@uniroma1.it

#### Download English Version:

# https://daneshyari.com/en/article/6578608

Download Persian Version:

https://daneshyari.com/article/6578608

<u>Daneshyari.com</u>