
Review

Stability and Second Law of Thermodynamics in dual-phase-lag heat
conduction q

Mauro Fabrizio ⇑, Barbara Lazzari
Dipartimento di Matematica, Alma Mater Studiorum – Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy

a r t i c l e i n f o

Article history:
Received 20 November 2013
Received in revised form 10 February 2014
Accepted 10 February 2014
Available online 9 April 2014

Keywords:
Heat conductor
Stability
Thermodynamics
Phase-lag

a b s t r a c t

In this paper, two heat conductor models with fading memory are obtained by different approximations
of Tzou’s dual-phase-lag theory. For the first model, we obtain a close coincidence between the restric-
tions of the second law and the asymptotic stability. Otherwise, for the second model the thermodynamic
restrictions appear more restrictive compared with the conditions following from the asymptotic
stability.
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1. Introduction

In the last years, there have been considered several constitu-
tive equations for the heat flux, obtained by different approxima-
tions of the theory proposed by Tzou [20–22] in 1995. In which
the classical Fourier law is replaced by the equation

qðx; t þ sqÞ ¼ �krhðx; t þ shÞ sq > 0 sh > 0: ð1Þ

Even recently, it has been shown that the related differential prob-
lem can lead to ill posed problems (see [4]). Otherwise, it was
proved that the model (1) for sq–sh is not in agreement with the
Second Law of Thermodynamics (see [10]).

Nevertheless, some differential problems obtained by suitable
expansions of Eq. (1) can satisfy the thermodynamic restrictions.
These models are obtained by taking into account the Taylor series
in both sides of (1) an retaining terms up a fixed order in sq and sh.

In this paper we consider the following approximate constitu-
tive equations for the heat flux

s2
q

2
€qðx; tÞ þ sq _qðx; tÞ þ qðx; tÞ ¼ �k½rhðx; tÞ þ shr _hðx; tÞ�; ð2Þ
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s2
q

2
€qðx; tÞþsq _qðx; tÞþqðx; tÞ ¼�k rhðx; tÞþshr _hðx; tÞþs2

h

2
r€hðx; tÞ

� �
:

ð3Þ

The heat equation, associated with the constitutive equation (2) or
(3), determines partial differential equations of the third order in
time which have received attention in the literature for the study
of existence, uniqueness and stability, under suitable restrictions
on the parameters sq and sh (see for example Quintanilla [15,16]
and Wang et al. [24–26]).

The aim of this paper is to rewrite Eqs. (2) and (3) in the frame-
work of Gurtin–Pipkin and Coleman–Gurtin fading memory theory
[13,6]. So that, the heat flux depends on the history of the temper-
ature gradient.

With this different approach we the study the compatibility of
the models with thermodynamical principles. We observe a natu-
ral agreement between the conditions on the asymptotic stability
and the thermodynamic constrains for the model (2), indeed we
obtain the same restrictions on sq and sh.

Otherwise, in the study of Eq. (3), written by a fading memory
constitutive equation, we prove the exponential stability under
the same conditions sq < ð2þ

ffiffiffi
3
p
Þsh considered by Quintanilla

[15], while the restrictions which follow from Second Law involve
the following more restrictive inequality

2�
ffiffiffi
3
p� �

sh < sq < 2þ
ffiffiffi
3
p� �

sh: ð4Þ

Otherwise, from the second example, we observe as the stabil-
ity conditions appear wider than the thermodynamic restrictions
(4), which follow from the Second Law expressed on closed cycles.

In the past, the relationship between asymptotic stability and
thermodynamic restrictions has attracted the interest of many re-
searches with very meaningfull papers [9,5,12,7,8]. In these works,
it was observed a harmony between stability and thermodynamic
requirements. Therefore a first glance, the results of this paper
appear unusual, because they conflict with these previous
important researches. For this reason the example studied above
can be of some interest and has to require further study, in order
to verify if the thermodynamic conditions may be affected by the
particular expression used for the Second Law.

2. Dual-phase-lag heat conductor model (2) as a material with
memory

It is well known that the Cattaneo–Maxwell constitutive
equation [3]

sq _qðx; tÞ þ qðx; tÞ ¼ �krhðx; tÞ;

can be rewritten in the context of the Gurtin–Pipkin theory in the
following form

qðx; tÞ ¼ �
Z t

�1
jðt � sÞrhðx; sÞ ds; ð5Þ

where the memory kernel j is given by

jðsÞ ¼ k
sq

e�
s
sq :

Later on the dependence on x will be omitted.
We observe that nðtÞ ¼ ae�t=sq is a general solution of equation

sq
_nðtÞ þ nðtÞ ¼ 0:

To rewrite Eq. (2) as a memory constitutive model, we observe that
the general solution of equation

1
2
s2

q
€nðtÞ þ sq

_nðtÞ þ nðtÞ ¼ 0;

is given by

nðtÞ ¼ e�t=sq ½a cosðt=sqÞ þ b sinðt=sqÞ�:

So that, when we put

qðtÞ ¼ �
Z t

�1
e�ðt�sÞ=sq a1 cos

t � s
sq

� �
þ b1 sin

t � s
sq

� �� �
rhðsÞ ds;

ð6Þ

then the constants a1 and b1 satisfy (2) if the equation holds

1
2
s2

q
€qðtÞ þ sq _qðtÞ þ qðtÞ ¼ � a1 þ b1

2
sqrhðtÞ þ a1

2
s2

qr _hðtÞ
� �

: ð7Þ

The comparison of (7) and (2) yields

a1 ¼ 2k
sh

s2
q
; b1 ¼ 2k

sq � sh

s2
q

:

With these values, (6) become

qðtÞ ¼ � 2k
s2

q

Z t

�1
e�ðt�sÞ=sq sh cos

t � s
sq

� ��
þðsq � shÞ sin

t � s
sq

� ��
rhðx; sÞ ds;

or in the equivalent form

qðtÞ ¼ � k
s2

q

Z 1

0
j1ðsÞrhtðx; sÞ ds; ð8Þ

where htðx; sÞ ¼ hðx; t � sÞ and

j1ðsÞ ¼ 2e�s=sq sh cos
s
sq

� �
þ ðsq � shÞ sin

s
sq

� �� �
: ð9Þ

2.1. Thermodynamic restrictions

To determine the restrictions imposed by thermodynamics on
the constitutive Eq. (8), we postulate the Second Law of Thermody-
namics in terms of Clausius–Duhem inequality [11].

In the framework of linear rigid conductor with memory, this
inequality can be formulated on cyclic histories of period T by
requiring (see, for example, [1])I

qðtÞ � rhðtÞ dt 6 0; ð10Þ

where the equality occurs only for the null cycle.
Consequently, any cycle characterized by the history

rhtðsÞ ¼ g1 cos½xðt � sÞ� þ g2 sin½xðt � sÞ�; ð11Þ

with x > 0 and jg1j
2 þ jg2j

2
> 0 must satisfy (10) as an inequality.

When q is given by (8) and periodic histories (11), inequality
(10) becomes

� k
s2

q

Z 2p=x

0
½g1 cosðxtÞ þ g2 sinðxtÞ� �

Z 1

0
j1ðsÞfg1 cos½xðt � sÞ�

þ g2 sin½xðt � sÞ�g ds dt < 0;

from which, we obtain

� k
s2

q

p
x

g2
1 þ g2

2

	 
 Z 1

0
j1ðsÞ cosðxsÞ ds < 0:

Since the half range cosine Fourier transform of j1 is

j1c ðxÞ ¼
2s2

q

4þx4s4
q

2þ ð2sh � sqÞsqx2� �
;

hence the thermodynamic restriction (10) is satisfies if
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