## Accepted Manuscript Rational design of metal-organic framework-templated hollow $NiCo_2O_4$ polyhedrons decorated on macroporous CNT microspheres for improved lithiumion storage properties Seung-Keun Park, Su Hyun Yang, Yun Chan Kang PII: S1385-8947(18)30905-7 DOI: https://doi.org/10.1016/j.cej.2018.05.091 Reference: CEJ 19107 To appear in: Chemical Engineering Journal Received Date: 17 March 2018 Revised Date: 14 May 2018 Accepted Date: 15 May 2018 Please cite this article as: S-K. Park, S.H. Yang, Y.C. Kang, Rational design of metal-organic framework-templated hollow NiCo<sub>2</sub>O<sub>4</sub> polyhedrons decorated on macroporous CNT microspheres for improved lithium-ion storage properties, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.05.091 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ## ACCEPTED MANUSCRIPT design of metal-organic framework-templated Rational NiCo<sub>2</sub>O<sub>4</sub> polyhedrons decorated on macroporous CNT microspheres for improved lithium-ion storage properties Seung-Keun Park, Su Hyun Yang, and Yun Chan Kang\* Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea \*Corresponding author E-mail: vckang@korea.ac.kr. Tel.: +82-2-928-3584. Fax: +82-2-3290-3268. **Abstract:** We report three-dimensional (3D) porous microspheres comprising interconnected carbon nanotubes (CNT) decorated with hollow NiCo<sub>2</sub>O<sub>4</sub> polyhedrons (H-NCO/CNT) for high- performance lithium-ion batteries (LIBs). The rationally designed composites are successfully fabricated via the combination of spray-pyrolysis and solution-based methods. The macroporous CNT microsphere obtained by spray pyrolysis acts as a substrate for the growth of the zeolitic imidazolate framework-67 (ZIF-67) in ethanol solution. During ion exchange and subsequent oxidation processes, the ZIF-67 polyhedrons were converted into hollow NiCo<sub>2</sub>O<sub>4</sub> polyhedrons consisting of small crystal domains. Rational design of such composite microspheres offers a highly conductive 3D porous network that simultaneously enables fast ion and electron diffusion deep inside the electrodes during cycling. In addition, the hollow polyhedron interiors can accommodate 1 ## Download English Version: ## https://daneshyari.com/en/article/6578723 Download Persian Version: $\underline{https://daneshyari.com/article/6578723}$ Daneshyari.com