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a b s t r a c t

The solution of the classical one-dimensional Stefan problem predicts that in time t the melt front goes as
sðtÞ � t

1
2. In the presence of heterogeneity, however, anomalous behavior can be observed where the time

exponent n– 1
2. In such a case, it may be appropriate to write down the governing equations of the Stefan

problem in terms of fractional order time (1 P b > 0) and space (1 P a > 0) derivatives. Here, we present
sharp and diffuse interface models of fractional Stefan problems and discuss available analytical solu-
tions. We illustrate that in the fractional time case (b < 1), a solution of the diffuse interface model in
the sharp interface limit will not coincide with the solution of the sharp interface counterpart; negating
a well know result of integer derivative Stefan problems. The paper concludes with the development of
an implicit time stepping numerical solution for the diffuse interface fractional Stefan model. Results
from this solution are verified with available analytical solutions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The one-phase Stefan problem, involving the tracking of the
phase change interface sðtÞ during the melting of a solid initially
at the phase change temperature T ¼ 0, is the archetypical moving
boundary problem [1,2]. The diffusion like heat flux in this problem
can be expressed in terms of a local instantaneous temperature
gradient. As such, based on the analogy between diffusion and
Brownian motion, the time scaling of the problem—which will
determine the nature of the movement of the phase front—is
� t

1
2. In the presence of media heterogeneity, however, fast trans-

port paths and/or regions of hold-up can result in anomalous diffu-
sion where the exponent in the time scale n– 1

2. When the length
scales of the heterogeneity are distributed as a power-law, Metzler
and Klafter [3] have shown, by considering non-Brownian random
walk processes, that anomalous diffusion can be modeled in terms
of fractional derivatives [4]. A treatment that essentially represents
the flux at a point in space and time as a non-local quantity made
up of a weighted average of temperature gradients over space and
through time; the former leading to super-diffusion behavior
where n > 1

2, the later to sub-diffusion behavior where n < 1
2.

Anomalous behaviors are observed in Stefan-like problems. In
the horizontal diffusion of moisture in to a porous brick—a partic-
ular limit case of the Stefan problem see [5]—experiments measur-
ing the movement of the moisture front sðtÞ � tn have observed
both sub-(n < 1

2) and super-(n > 1
2) diffusion, see Table 1 in Sun

et al. [6]. Experiments have also shown that the growth of the frost
on a cooled plate can be super-diffusive, e.g., Tao et al. [7], arrive at
an empirical correlation that gives the thickness of the frost layer
growing as � t0:655. Thus, there is some physical motivation to
study anomalous Stefan problems. Further, when one notes that
the distribution and connectivity of the pores in brick and the vari-
ations in the crystal morphology in a frost layer will have a distri-
bution of length scales, it is reasonable to try and construct
appropriate models using fractional derivatives.

Fractional Stefan and related moving boundary problems have
been previously studied [8–10]. Liu and Xu [8] provide a closed
form solution for the one-dimensional problem where the first or-
der time derivative in the governing Fourier heat transfer equation
and the Stefan moving boundary condition are replaced by frac-
tional derivatives of order 1 P b > 0. The result is a sub-diffusive
movement of the phase front sðtÞ � t

b
2. In addition to using frac-

tional time derivatives, Li et al. [9] also replace the Laplacian in
the Fourier equation with an operator of fractional order
2 P 1þ a > 1 and model the flux term in the Stefan condition with
a space derivative of order a. In this case, the front movement is gi-
ven by sðtÞ � t

b
1þa, which—depending on the choice of a and b—can

exhibit both super and sub diffusive behaviors. Voller analytically
studies the limit case one-dimensional Stefan problem related to
the vertical infiltration of a sharp moisture front into soil [11]
(the Green Ampt problem) and the horizontal movement of mois-
ture in a porous brick [5]. The later of these works replacing the
first order time derivative with a fractional derivative of order
1 P b > 0 and modeling the flux as a fractional space derivative
(fractional gradient) of order 1 P a > 0. Similar to the result in Li
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et al. [9], the solution of this limit case also exhibits a time expo-
nent with the super/sub diffusive form b

1þa.
In terms of approximate solutions of fractional Stefan problems

Li et al. [12] study a similarity form in a cylindrical geometry, Singh
et al. [13] and Rajeev and Kushwaha [14] investigate the use of
homotopy perturbation methods. The former of these last two
works looks at the case where both time and space derivatives
are fractional but offers no verification of the solutions. The later
work just looks at the case of a fractional time derivative, the
resulting approximate solution having the correct time exponent
n ¼ b

2 but failing to match the exact solution reported in [8].
The work noted above is based on the ‘‘sharp’’ interface form of

the Stefan problem, where a specific condition, the Stefan condi-
tion, is used to determine the movement of the melt front. The
alternative model is to use a ‘‘diffuse’’ interface model [1]. Here
the sharp interface is smeared out by assuming that there is a tem-
perature region �P T P 0 over which the liquid fraction—a known
(prescribed) function of temperature f ðTÞ—changes smoothly from
the liquid value of f ¼ 1 to the solid value of f ¼ 0. In this way, the
time evolution of the phase change can be tracked by considering
the transient of the appropriate conserved quantity. In heat trans-
fer settings this conserved quantity is the enthalpy, which, on suit-
able scaling, can be written as H ¼ cT þ f ðTÞ where c is a
dimensionless specific heat term (i.e. the Stefan number—a ratio
of sensible to latent heat). Physical realizations occur in the solid-
ification of alloys and, in the appropriate limit, the transport of
water in the partially saturated vadose zone. A number of studies
of fractional forms of the diffusive interface models have been pre-
sented in the literature. For example, on defining the heat flux as a
fractional gradient, Voller [15] and Damor et al. [16] use an explicit
time stepping numerical treatment of the enthalpy form to model
the solidification in a binary alloy; the work in [15] indicating the
expected time scale � t

1
1þa. Further, it can be shown that on inter-

preting the temperature as a metric potential and using a suitable
form of the function f ðtÞ the limit case of the enthalpy formulation
as c! 0 matches the Richards equation for flow in partially satu-
rated media. Time fractional versions of the Richards equation
have been studied by Gerolymatou et al. [17] and in a related
approach, based on fractal derivatives, by Sun et al. [6]; both
studies indicating the expected time scale � t

b
2.

In a local and instantaneous setting it is known that as the
thickness of the interface is reduced, i.e., as �! 0, the solution of
the diffusive interface model converges to the solution of the cor-
responding sharp interface model [1]. Recent work by Voller et al.
[18] however, suggests that when a fractional time derivative is

introduced into the enthalpy formulation, while the correct time
scaling exponent is preserved, the solutions of the diffuse interface
model in the limit �! 0 and the sharp interface model are not in
agreement. A situation that comes about through the different nat-
ures by which memory of the phase transition is accounted for. In
the time fractional sharp interface model the memory of the phase
transition is held by the moving interface, while in the time frac-
tional diffuse model the memory is distributed throughout the
melt region [18].

Although, for the sharp interface case, some approximate
solutions of fractional Stefan problems have been introduced in
the literature there have been no full numerical solutions offered.
The object of this paper is to provide such solutions. In particular,
numeral solutions for the fractional diffuse interface model in the
sharp interface limit will be developed. Emphasis will be placed on
comparing the numerical solutions with available closed form
solutions. Obvious candidates for this task would be the solutions
for the sharp interface Stefan problem derived by Liu and Xu [8]
and Li et al. [9], and the solutions in the moisture transport limit
(c! 0) derived by Voller [5]. In light of the above discussion, how-
ever, care has to be taken because it is not to be expected that the
fractional time sharp interface solutions will agree with the diffu-
sive interface solution counterpart. To overcome this short fall we
will introduce a new closed form solution for the fractional time
derivative model of the diffuse moisture transport problem. A solu-
tion that explicitly exposes the disagreement between the frac-
tional time sharp and diffuse interface models and is readily able
to verify the fractional time form of the proposed numerical
solution.

The paper is laid out as follows. In the next section sharp and
diffusive interface (enthalpy) Stefan models are derived. Following,
a brief primer on fractional calculus, the derivation of fractional
Stefan problems is made, including discussion of appropriate
closed from solutions. We next develop implicit time stepping
numerical solutions of the diffusive interface form of the fractional
Stefan model. It is shown that, in the sharp interface limit �! 0,
these solutions exhibit the expected time scale exponents and
agree with a suite of available analytical solutions.

2. Stefan models

2.1. A problem statement

To streamline discussion and development we will focus on a
one-phase, one-dimensional Stefan problem with constant thermal

Nomenclature

a constant
C specific heat [J/kg K]
C1 constant
c Stefan number [CT=L]
f liquid fraction
g step function
H enthalpy
K conductivity [J/m s K]
k weight
L latent heat [J/kg]
‘ length scale
p front parameter
s position of melt front
T temperature
T0 temperature at x ¼ 0 [K]
t time

X normalized space [x=s]
x space
a order of space derivative (0,1]
b order of time derivative (0,1]
Dx;Dt space and time steps
� interface thickness
q density [kg/m3]

subscripts/superscripts
i; j indices
it iteration counter
ipos nodal location of front
jtim time step
n time exponent
old old time step value
⁄ dimensioned quantity
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