Accepted Manuscript

Leaf-extract mediated zero-valent iron for oxidation of Arsenic (III): Preparation, characterization and kinetics

Anu Rana, Nisha Kumari, Megha Tyagi, Sheeja Jagadevan

PII: S1385-8947(18)30648-X

DOI: https://doi.org/10.1016/j.cej.2018.04.075

Reference: CEJ 18875

To appear in: Chemical Engineering Journal

Received Date: 13 November 2017 Revised Date: 26 March 2018 Accepted Date: 12 April 2018

Please cite this article as: A. Rana, N. Kumari, M. Tyagi, S. Jagadevan, Leaf-extract mediated zero-valent iron for oxidation of Arsenic (III): Preparation, characterization and kinetics, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.04.075

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Leaf-extract mediated zero-valent iron for oxidation of Arsenic (III): Preparation, characterization and kinetics

Anu Rana^a, Nisha Kumari^a, Megha Tyagi^a, Sheeja Jagadevan^{a*}

^aDepartment of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India- 826004.

*Corresponding author: Sheeja Jagadevan, Email: sheejaj@iitism.ac.in,

Tel. +91-326-2235162, Fax: +91-326-2296624

Abstract

In recent years, leaf-extract mediated green synthesis of zero-valent iron nanoparticles is gaining much popularity as it is cost effective and an eco-friendly alternative to chemically synthesized zero-valent iron. The present study reports the synthesis and characterization of nanoscale zero-valent iron particles obtained from various leaf extracts viz. eucalyptus (*Eucalyptus globulus*), mango (*Mangifera indica*), jamun (*Syzygium cumini*) and guava (*Psidium guajava*). The synthesized nanoparticles were characterized on the basis of size distribution, UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy, Field emission scanning electron microscopy and powder X-ray diffractometer. This study further investigates the potential of these nanoparticles for oxidation of arsenite (1000 μ g/L) at various pH (3, 7 and 9). Results indicate that green nanoparticles synthesized from guava leaves were capable of oxidising As(III) to As(V) at all investigated pH values, the kinetics of which varied depending on the pH. As(III) oxidation kinetic model fitted well to first order with K_{obs} values of 0.3444 s⁻¹, 0.0482 s⁻¹ and 0.0155 s⁻¹ for pH 3, 7 and 9 respectively. This study provides a novel mechanism for oxidation of arsenite to arsenate, thus providing an effective and sustainable solution for remediation of toxic trivalent arsenic.

Keywords: Zero-valent iron, Green synthesis, Leaf extract, Characterization, Arsenic.

Download English Version:

https://daneshyari.com/en/article/6579017

Download Persian Version:

https://daneshyari.com/article/6579017

<u>Daneshyari.com</u>