### Accepted Manuscript

Accepted Date:

One-step synthesis of flour-derived functional nanocarbons with hierarchical pores for versatile environmental applications

Wenjie Tian, Huayang Zhang, Hongqi Sun, Moses O. Tadé, Shaobin Wang

| PII:           | S1385-8947(18)30712-5                     |
|----------------|-------------------------------------------|
| DOI:           | https://doi.org/10.1016/j.cej.2018.04.139 |
| Reference:     | CEJ 18939                                 |
| To appear in:  | Chemical Engineering Journal              |
| Received Date: | 24 February 2018                          |
| Revised Date:  | 19 April 2018                             |

20 April 2018



Please cite this article as: W. Tian, H. Zhang, H. Sun, M.O. Tadé, S. Wang, One-step synthesis of flour-derived functional nanocarbons with hierarchical pores for versatile environmental applications, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.04.139

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## ACCEPTED MANUSCRIPT

## One-step synthesis of flour-derived functional nanocarbons with hierarchical pores for versatile environmental applications

*Wenjie Tian*<sup>*a,†*</sup>, *Huayang Zhang*<sup>*a,†*</sup>, *Hongqi Sun*<sup>*b,\**</sup>, *Moses O. Tadé*<sup>*a*</sup>, *and Shaobin Wang*<sup>*a,\**</sup> <sup>*a*</sup>Department of Chemical Engineering and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Curtin University, GPO Box-U1987, WA 6845, Australia

<sup>b</sup> School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA

6027, Australia

<sup>*†*</sup> Authors contributed equally.

\* Corresponding authors.

Email: shaobin.wang@curtin.edu.au (S. Wang), h.sun@ecu.edu.au (H. Sun)

#### ABSTRACT

In this study, we develops a one-step and scalable approach to synthesize functional carbons with a tuneable and hierarchically porous structure as well as tailored surface chemistry for environmental applications in CO<sub>2</sub> adsorption and carbocatalysis to remove emerging water contaminants. By pyrolyzing a mixture of wheat flour and NaHCO<sub>3</sub>/Na<sub>2</sub>CO<sub>3</sub>/K<sub>2</sub>CO<sub>3</sub> at 700 °C, honeycomb structured carbons (700-PC) with dominant micropores can be formed and exhibit an excellent CO<sub>2</sub> storage capacity of 6.8 mmol g<sup>-1</sup> at 0 °C and ambient pressure. By including dicyandiamide in the precursors, coralloid carbon skeletons in a micro- and meso-porous texture are selectively formed in the N-doped hierarchical porous carbons (N-PCs). 800-N-PC (N-PCs prepared at 800 °C) with a high surface area of 3041 m<sup>2</sup> g<sup>-1</sup> shows an enhanced capacity of 19.4 mmol g<sup>-1</sup> at 0 °C, 10 bar. For water remediation, 800-N-PC exhibits the most efficient degradation of *p*-hydroxybenzoic acid (HBA) by advanced oxidation processes (AOPs), with a high reaction rate constant of 0.39 min<sup>-1</sup> at 25 °C. In addition, 800-N-PC shows selective adsorption of HBA in a mixed solution of HBA and

Download English Version:

# https://daneshyari.com/en/article/6579076

Download Persian Version:

https://daneshyari.com/article/6579076

Daneshyari.com