

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Photocatalytic reduction of CO_2 to hydrocarbons using bio-templated porous TiO_2 architectures under UV and visible light

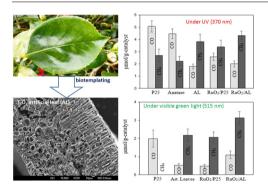
Iman Hashemizadeh^a, Vladimir B. Golovko^b, Jungkyu Choi^c, Daniel C.W. Tsang^d, Alex C.K. Yip^{a,*}

^a Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand

^b School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand

^c Department of Chemical & Biological Engineering, College of Engineering, Korea University, Seoul, Republic of Korea

^d Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China


HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Bio-templated TiO₂ has mesoporous structure replicating pores in green leaves.
- The porous TiO₂ showed higher visible light photocatalytic activity than P25 TiO₂.
- Bio-templated TiO₂ outperformed P25 TiO₂ in CO₂ reduction and ethanol reforming.
- Significant effect of morphology on the photocatalytic activity was demonstrated.
- Deposition of RuO₂ improved photocatalytic activity under UV and visible light.

ARTICLE INFO

Keywords: CO₂ photoreduction Alcohol photoreforming Photocatalyst Visible light Biotemplating

ABSTRACT

Artificial TiO₂ leaves with the morphology replicating that of *Camellia* tree leaves were synthesized through a multi-step bio-templating approach. Scanning and transmission electron microscopy images of the final products indicated that proposed method successfully replicates the highly porous structure of the leaf photosystem, down to the thylakoids. The hierarchical pore network and morphology of the bio-templated TiO₂ catalyst were demonstrated to be critical factors in successful photocatalytic reduction of CO₂ under UV (370 nm) and visible (515 nm) light. The artificial TiO₂ leaves increased the selectivity towards methane in CO₂ photoreduction compared with benchmark commercial catalyst under UV light. The new TiO₂ structures also outperformed the P25 titania by more than 1.35 times in terms of total product yield (CO + CH₄) of under visible light. We hypothesized that modifying the morphology of the catalyst can alter the pathway and efficiency of photocatalytic reactions. Deposition of ruthenium dioxide on the surface of the new TiO₂ architecture showed further improvement in photocatalytic activity under both UV and visible light. The experimental data exhibited a very good fit to the pseudo first order kinetics. The understanding of the morphological contribution of the photocatalyst revealed in this study can help to augment the efficiency and selectivity of CO₂ photoreduction.

* Corresponding author. E-mail address: alex.yip@canterbury.ac.nz (A.C.K. Yip).

https://doi.org/10.1016/j.cej.2018.04.094

Received 7 December 2017; Received in revised form 12 April 2018; Accepted 13 April 2018 Available online 16 April 2018 1385-8947/ © 2018 Elsevier B.V. All rights reserved.

1. Introduction

Sustainable processes for efficient conversion of solar energy to fuels has been heavily researched in recent years. Natural photosynthesis, which plays a fundamental role in the life cycle of nature, provides a promising blueprint for such system design. Green leaves capture CO₂ and convert it into chemicals via photosynthesis using solar energy. In chemical parlance, artificial photosynthesis is the conversion of water and carbon dioxide into hydrocarbons and oxygen [1,2]. Conducting photoreduction of CO₂ in stirred batch reactors, which involve gas and liquid phases in the presence of heterogeneous catalyst, is the most economical and convenient way to meet CO₂ abatement targets, especially for developing countries [3]. However, the performance of this photocatalytic system highly depends on the operating conditions; for example, the gas-phase partial pressure CO₂ affects the solubility of CO₂ in water [4]. Other operating conditions (pH, temperature, stirring rate, light wavelength and intensity etc.) are also influential. For instance, although higher temperatures may speed-up reactions corresponding to the rate determining steps of the process, the increase in temperature could often show overall detrimental effect on the photocatalytic CO₂ reduction due to the low CO₂ solubility in water [5]. The volume of the reacting phase should be optimized to fulfil perfect mixing and to overcome mass transfer limitations in slurry reactors [6,7]. High concentration of catalyst may cause undesirable effects of light scattering or poor penetration. Ballari et al. [6,7] showed that the catalyst loading should be below 1 g L^{-1} in order to achieve efficient light penetration. Furthermore, the use of NaOH solution can increase the amount of dissolved CO₂ since the caustic NaOH solution dissolves more CO₂ than pure water forming bicarbonate species [8]. The highly concentrated OH⁻ ions from NaOH in aqueous solution could also act as strong holescavengers, helping to decrease the recombination rate of photogenerated electron-hole pairs [9].

Apart from reaction conditions, the efficiency and selectivity of solar-assisted reactions also strongly depend on the performance of the photocatalyst itself. Titanium dioxide (TiO₂)-based materials with their low toxicity, good durability, high thermal and chemical stabilities and, most importantly, the capability of generating photoinduced electronhole pairs allow them to be ideal candidates for CO_2 reduction [10]. Despite intense research on developing efficient TiO₂ materials for producing solar fuels, the effects of the morphology of the photocatalyst on the selectivity and yield in catalytic CO₂ photoreduction are less studied. The efficiency of the photocatalytic reactions is an overall outcome of various steps: light absorption, rate of transport of photogenerated charge carriers to the surface vs. the electron-hole recombination rate, and mass transfer of reagents and scavengers to the catalyst surface. The local structure of the photocatalyst, particularly the particle size and shape, strongly influences the aforementioned parameters [11].

A wide range of TiO₂ architectures, including nanorods, nanosheets, nanowires, nanotubes, and aerogels, have been developed to enhance the photocatalytic activity [12,13]. The improved photocatalytic performance of TiO₂ nanomaterials is a result of several key factors. These include large surface area, enhanced excitation behaviour, high efficiency of light absorption, lower recombination rates *etc.* [14]. Commonly studied nanoscale TiO₂ materials can be synthesized *via* a number of different methods, including sol-gel, micellar and solvothermal syntheses, direct oxidation, chemical or physical vapour deposition, electrodeposition, and microwave synthesis. However, some challenges still exist; one of the most important difficulties is associated with controlling the shape and crystallinity of the final product [13,14].

Replication of the natural hierarchical structures has been recently proposed as an avenue for the development of TiO_2 -based photocatalysts with improved light-harvesting function [15]. Bio-inspired systems have emerged as a promising area of research for developing novel materials with a higher standard of environmental compatibility, recyclability, and energy efficiency [16]. The unique characteristics of green leaf photosystems, which range from the molecular to nanometre to the millimetre scales, make them efficient light-harvesting structures. The main antenna of plant photosystems is the chloroplast. The thylakoid cylindrical stacks (granum) inside the chloroplast are 3-dimensional constructions that are made of interconnected nanolayers, which efficiently harvest light and direct it to chlorophylls as the reactive centres of the plant photochemical machine [17,18].

However, the surface chemical modification of TiO_2 materials is a common approach to redshift the effective wavelength for photocurrent generation in the visible light region. Semiconductors with a narrower bandgap than that of pure titania can be used as sensitizers. The sensitizers include inorganic semiconductors, metals, and organic dyes. Transition metals, such as Cu, Fe, Ru, and Ag, have shown promising results in improving the optical properties of TiO_2 photocatalysts. The well-matched electronic structure of metals and TiO_2 enhances the charge transfer and results in efficient charge separation [19,20].

In this report, TiO₂ architectures with a unique pore network have been synthesized *via* our improved bio-templating approach. The *Camellia* tree leaves from the Theaceae family, which belongs to C₄ plants that possess the Kranz anatomy, were used as a template. This study focuses on the effect of morphology of bio-templated materials on their photocatalytic performance in photoreduction of CO₂ using water under UV and visible light irradiation. Modification of the new TiO₂ architecture was also achieved by loading ruthenium oxide (RuO₂) onto the surface to enhance the charge transfer/separation and to redshift the effective wavelength for photocurrent generation in the visible light region. Non-porous commercial titania catalysts, pure anatase, and P25 were used as a benchmark. The advantages of using the new stacklayered TiO₂ nanostructure based on the template of natural leaves to convert CO₂ into methane (CH₄) using a simple reactor design are demonstrated in this study.

2. Materials and methods

2.1. Chemicals

All reagents were of analytical grade and were purchased from Sigma-Aldrich. All reagents were used as received. All glassware was oven dried and experiments were performed using the Schlenk line technique to avoid contact with ambient air when required. The high purity CO_2 (\geq 99.995%) was used to avoid any hydrocarbon contamination.

2.2. Synthesis procedure of bio-templated TiO_2 artificial leaves

The synthesis procedure is illustrated in Scheme A1 with full details reported in our earlier study [21]. First, the natural chlorophyll breakdown process was mimicked using an ion-exchange approach. An acid treatment of natural leaves (Camellia tree) was conducted until the colour of the leaves became yellow-brown, which indicates the conversion of chlorophyll into pheophorbide [22]. In total, 6.00 g of the pre-washed fresh leaves were cut into small pieces (ca. 5 by 5 mm) and then stirred in a 5 v/v% HCl solution under inert atmosphere (Schlenk line technique) overnight (until the colour of leaves changed). Subsequently, the leaves were treated in 400 mL of 5 v/v% TiCl₃ solution in water (i.e. 5 v% of TiCl₃ of $\ge 12 wt\%$ in HCl by Sigma-Aldrich diluted with 95 v% of MilliQ H₂O) with gentle stirring (250 rpm) at ambient temperature for 24 h. The Ti³⁺ exchange was performed under inert atmosphere to protect titanium ions from oxidation and to introduce Ti cations into the nanostructure of thylakoids via ion-exchange with protonated form of the chlorophylls. Next, the treated leaves were coated with TiO₂ using a sol-gel method, which was modified from a reported method in the literature [23]. The Ti³⁺-exchanged leaves were filtered off, washed with MilliQ water and dried in a vacuum desiccator over P2O5. Dry leaves were suspended in dry ethanol (250 mL) with

Download English Version:

https://daneshyari.com/en/article/6579207

Download Persian Version:

https://daneshyari.com/article/6579207

Daneshyari.com